Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T20:18:12.171Z Has data issue: false hasContentIssue false

Numerical calculation of three-point branched covers of the projective line

Published online by Cambridge University Press:  01 September 2014

Michael Klug
Affiliation:
Department of Mathematics and Statistics, University of Vermont, 16 Colchester Ave, Burlington, VT 05401, USA email mklug@uvm.edu
Michael Musty
Affiliation:
Department of Mathematics and Statistics, University of Vermont, 16 Colchester Ave, Burlington, VT 05401, USA email michaelmusty@gmail.com
Sam Schiavone
Affiliation:
Department of Mathematics and Statistics, University of Vermont, 16 Colchester Ave, Burlington, VT 05401, USA email samuel.schiavone@uvm.edu
John Voight
Affiliation:
Department of Mathematics and Statistics, University of Vermont, 16 Colchester Ave, Burlington, VT 05401, USA Department of Mathematics, Dartmouth College, 6188 Kemeny Hall, Hanover, NH 03755, USA email jvoight@gmail.com

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We exhibit a numerical method to compute three-point branched covers of the complex projective line. We develop algorithms for working explicitly with Fuchsian triangle groups and their finite-index subgroups, and we use these algorithms to compute power series expansions of modular forms on these groups.

Type
Research Article
Copyright
© The Author(s) 2014 

References

Andrews, G. E., Askey, R. and Roy, R., Special functions , Encyclopedia of Mathematics and its Applications 17 (Cambridge University Press, Cambridge, 1999).Google Scholar
Bartholdi, L., Buff, X., von Bothmer, H.-C. G. and Kröker, J., ‘Algorithmic construction of Hurwitz maps’, Preprint, 2013, arXiv:1303.1579v1.Google Scholar
Beckmann, S., ‘Ramified primes in the field of moduli of branched coverings of curves’, J. Algebra 125 (1989) no. 1, 236255.Google Scholar
Belyĭ, G. V., ‘Galois extensions of a maximal cyclotomic field’, Math. USSR Izv. 14 (1980) no. 2, 247256.Google Scholar
Belyĭ, G. V., ‘A new proof of the three-point theorem’, Sb. Math. 193 (2002) no. 3–4, 329332 (translation).Google Scholar
Bosma, W., Cannon, J. and Playoust, C., ‘The Magma algebra system. I. The user language’, J. Symbolic Comput. 24 (1997) no. 3–4, 235265.CrossRefGoogle Scholar
Clark, P. L. and Voight, J., ‘Congruence subgroups of triangle groups’, Preprint, 2014.Google Scholar
Coombes, K. and Harbater, D., ‘Hurwitz families and arithmetic Galois groups’, Duke Math. J. 52 (1985) no. 4, 821839.Google Scholar
Cremona, J. E., Algorithms for modular elliptic curves , 2nd edn (Cambridge University Press, Cambridge, 1997).Google Scholar
Dèbes, P. and Emsalem, M., ‘On fields of moduli of curves’, J. Algebra 211 (1999) no. 1, 4256.Google Scholar
Elkies, N. D., ‘Shimura curve computations’, Algorithmic number theory, Portland, OR, 1998 , Lecture Notes in Computer Science 1423 (Springer, Berlin, 1998) 147.Google Scholar
Epstein, D. B. A. and Petronio, C., ‘An exposition of Poincaré’s polyhedron theorem’, Enseign. Math. (2) 40 (1994) no. 1–2, 113170.Google Scholar
Fieker, C. and Klüners, J., ‘Computation of Galois groups of rational polynomials’, 2013, arXiv:1211.3588.Google Scholar
Ford, L. R., Automorphic functions (McGraw-Hill, New York, 1929).Google Scholar
Galbraith, S. D., ‘Equations for modular curves’, PhD Thesis, University of Oxford, 1996.Google Scholar
Girondo, E. and González-Diez, G., Introduction to compact Riemann surfaces and dessins d’enfants , London Mathematical Society Student Texts 79 (Cambridge University Press, Cambridge, 2012).Google Scholar
Gloub, G. H. and van Loan, C. F., Matrix computations , 3rd edn (Johns Hopkins University Press, Baltimore, MD, 1996).Google Scholar
Grothendieck, A., ‘Sketch of a programme (translation into English)’, Geometric Galois actions. 1. Around Grothendieck’s esquisse d’un programme , London Mathematical Society Lecture Note Series 242 (eds Schneps, L. and Lochak, P.; Cambridge University Press, Cambridge, 1997) 243283.Google Scholar
Hafner, P. R., ‘The Hoffman–Singleton graph and its automorphisms’, J. Algebraic Combin. 18 (2003) 712.Google Scholar
He, Y.-H. and Read, J., ‘Hecke groups, dessins d’enfants and the Archimedean solids’, Preprint, 2013,arXiv:1309.2326v1.Google Scholar
Hejhal, D. A., ‘On eigenfunctions of the Laplacian for Hecke triangle groups’, Emerging applications of number theory , IMA Series 109 (eds Hejhal, D., Friedman, J., Gutzwiller, M. and Odlyzko, A.; Springer, 1999) 291315.Google Scholar
Holt, D. F., Handbook of computational group theory , Discrete Mathematics and its Applications (Chapman & Hall/CRC, 2005).Google Scholar
Hulpke, A., ‘Constructing transitive permutation groups’, J. Symbolic Comput. 39 (2005) no. 1, 130.Google Scholar
Ihara, Y., ‘Schwarzian equations’, J. Fac. Soc. Univ. Tokyo 21 (1974) 97118.Google Scholar
Javanpeykar, A., ‘Polynomial bounds for Arakelov invariants of Belyi curves’, PhD Thesis, Universiteit Leiden, 2013.Google Scholar
Johnson, D. L., Presentations of groups , 2nd edn, London Mathematical Society Student Texts 15 (Cambridge University Press, Cambridge, 1997).Google Scholar
Klüners, J., ‘On computing subfields: a detailed description of the algorithm’, J. Théor. Nombres Bordeaux 10 (1998) 243271.Google Scholar
Klug, M., ‘Computing rings of modular forms using power series expansions’, Master’s Thesis, University of Vermont, 2013.Google Scholar
Köck, B., ‘Belyĭ’s theorem revisited’, Beiträge Algebra Geom. 45 (2004) no. 1, 253265.Google Scholar
Kreines, E., ‘On families of geometric parasitic solutions for Belyi systems of genus zero’, Fundam. Prikl. Mat. 9 (2003) no. 1, 103111.Google Scholar
Kreines, E. M., ‘Equations determining Belyi pairs, with applications to anti-Vandermonde systems’, Fundam. Prikl. Mat. 13 (2007) no. 4, 95112.Google Scholar
Lenstra, A. K., Lenstra, H. W. Jr and Lovász, L., ‘Factoring polynomials with rational coefficients’, Math. Ann. 261 (1982) 513534.Google Scholar
Linton, S. A., ‘Double coset enumeration’, J. Symbolic Comput. 12 (1991) 415426.Google Scholar
Malle, G. and Matzat, B. H., Inverse Galois theory , Springer Monographs in Mathematics (Springer, Berlin, 1999).Google Scholar
Magnus, W., Noneuclidean tesselations and their groups , Pure and Applied Mathematics 61 (Academic Press, New York, 1974).Google Scholar
Magot, N. and Zvonkin, A., ‘Belyi functions for Archimedean solids’, Discrete Math. 217 (2000) no. 1–3, 249271.Google Scholar
Maskit, B., ‘On Poincaré’s theorem for fundamental polygons’, Adv. Math. 7 (1971) 219230.Google Scholar
Miranda, R., Algebraic curves and Riemann surfaces , Graduate Studies in Mathematics 5 (American Mathematical Society, Providence, RI, 1995).Google Scholar
Petersson, H., ‘Über die eindeutige Bestimmung und die Erweiterungsfähigkeit von gewissen Grenzkreisgruppen’, Abh. Math. Semin. Univ. Hambg. 12 (1937) no. 1, 180199.Google Scholar
Ratcliffe, J. G., Foundations of hyperbolic manifolds , 2nd edn (Springer, New York, 2005).Google Scholar
Rotman, J. J., An introduction to the theory of groups , 4th edn (Springer, New York, 1995).Google Scholar
Schneps, L., ‘Dessins d’enfants on the Riemann sphere’, The Grothendieck theory of dessins d’enfants , Lecture Notes in Mathematics 200 (Cambridge University Press, Cambridge, 1994) 4777.Google Scholar
Selander, B. and Strömbergsson, A., ‘Sextic coverings of genus two which are branched at three points’, Preprint, 2002, http://www2.math.uu.se/research/pub/Selander1.pdf.Google Scholar
Serre, J.-P., A course in arithmetic , Graduate Texts in Mathematics 7 (Springer, New York–Heidelberg, 1973).Google Scholar
Serre, J.-P., Topics in Galois theory , Research Notes in Mathematics 1 (Jones and Bartlett, Boston–London, 1992).Google Scholar
Shimura, G., ‘On some arithmetic properties of modular forms of one and several variables’, Ann. of Math. (2) 102 (1975) 491515.Google Scholar
Shimura, G., ‘On the derivatives of theta functions and modular forms’, Duke Math. J. 44 (1977) 365387.Google Scholar
Shimura, G., ‘Automorphic forms and the periods of abelian varieties’, J. Math. Soc. Japan 31 (1979) no. 3, 561592.Google Scholar
Shimura, G., Arithmeticity in the theory of automorphic forms , Mathematical Surveys and Monographs 82 (American Mathematical Society, Providence, RI, 2000).Google Scholar
Sijsling, J., ‘Arithmetic (1; e)-curves and Belyĭ maps’, Math. Comp. 81 (2012) no. 279, 18231855.Google Scholar
Sijsling, J. and Voight, J., ‘On computing Belyĭ maps’, Preprint, 2013, arXiv:1311.2529.Google Scholar
Silverman, J., Advanced topics in the arithmetic of elliptic curves , Graduate Texts in Mathematics 151 (Springer, New York, 1994).Google Scholar
Silverman, J., The arithmetic of elliptic curves , 2nd edn, Graduate Texts in Mathematics 106 (Springer, Dordrecht, 2009).Google Scholar
Singerman, D. and Syddall, R. I., ‘Belyĭ uniformization of elliptic curves’, Bull. Lond. Math. Soc. 29 (1997) 443451.Google Scholar
Slater, L. J., Generalized hypergeometric functions (Cambridge University Press, Cambridge, 1966).Google Scholar
Takeuchi, K., ‘Arithmetic triangle groups’, J. Math. Soc. Japan 29 (1977) no. 1, 91106.CrossRefGoogle Scholar
Takeuchi, K., ‘Commensurability classes of arithmetic triangle groups’, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977) no. 1, 201212.Google Scholar
Voight, J., ‘Quadratic forms and quaternion algebras: algorithms and arithmetic’, PhD Thesis, University of California, Berkeley, CA, 2005.Google Scholar
Voight, J., ‘Computing fundamental domains for Fuchsian groups’, J. Théor. Nombres Bordeaux 21 (2009) no. 2, 467489.Google Scholar
Voight, J. and Willis, J., ‘Computing power series expansions of modular forms’, Computations with modular forms , Mathematical Computer Science 6 (eds Boeckle, G. and Wiese, G.; Springer, Berlin, 2014) 331361.CrossRefGoogle Scholar
Voight, J. and Zureick-Brown, D., ‘The canonical ring of a stacky curve’, Preprint, 2014.Google Scholar
Wolfart, J., ‘The ‘obvious’ part of Belyi’s theorem and Riemann surfaces with many automorphisms’, Geometric Galois actions, Vol. 1 , London Mathematics Society Lecture Note Series 242 (Cambridge University Press, Cambridge, 1997) 97112.Google Scholar
Wolfart, J., ‘ABC for polynomials, dessins d’enfants, and uniformization — a survey’, Elementare und analytische Zahlentheorie , Schriften der Wissenschaftliche Gesellschaft Johann Wolfgang Goethe Universität Frankfurt am Main 20 (Franz Steiner, Stuttgart, 2006) 313345.Google Scholar