Article contents
On the computation of the determinant of vector-valued Siegel modular forms
Published online by Cambridge University Press: 01 August 2014
Abstract
Let $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}A^{0}(\Gamma _{2})$ denote the ring of scalar-valued Siegel modular forms of degree two, level $1$ and even weights. In this paper, we prove the determinant of a basis of the module of vector-valued Siegel modular forms $\bigoplus _{k \equiv \epsilon \ {\rm mod}\ {2}}A_{\det ^{k}\otimes \mathrm{Sym}(j)}(\Gamma _{2})$ over $A^{0}(\Gamma _{2})$ is equal to a power of the cusp form of degree two and weight $35$ up to a constant. Here $j = 4, 6$ and $\epsilon = 0, 1$. The main result in this paper was conjectured by Ibukiyama (Comment. Math. Univ. St. Pauli 61 (2012) 51–75).
- Type
- Research Article
- Information
- LMS Journal of Computation and Mathematics , Volume 17 , Special Issue A: Algorithmic Number Theory Symposium XI , 2014 , pp. 247 - 256
- Copyright
- © The Author 2014
References
- 2
- Cited by