Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T13:52:30.652Z Has data issue: false hasContentIssue false

Zeroes of partial sums of the zeta-function

Published online by Cambridge University Press:  01 February 2016

David J. Platt
Affiliation:
Heilbronn Institute for Mathematical Research , University of Bristol , Bristol , United Kingdom email dave.platt@bris.ac.uk
Timothy S. Trudgian
Affiliation:
Mathematical Sciences Institute , The Australian National University , ACT 0200 , Australia email timothy.trudgian@anu.edu.au

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This article considers the positive integers $N$ for which ${\it\zeta}_{N}(s)=\sum _{n=1}^{N}n^{-s}$ has zeroes in the half-plane $\Re (s)>1$. Building on earlier results, we show that there are no zeroes for $1\leqslant N\leqslant 18$ and for $N=20,21,28$. For all other $N$ there are infinitely many such zeroes.

Type
Research Article
Copyright
© The Author(s) 2016 

References

Avellar, C. E. and Hale, J. K., ‘On the zeros of exponential polynomials’, J. Math. Anal. Appl. 73 (1980) 434452.Google Scholar
Borwein, P., Fee, G., Ferguson, R. and van der Waall, A., ‘Zeros of partial sums of the Riemann zeta function’, Exp. Math. 16 (2007) no. 1, 2139.Google Scholar
Dubon, E., Mora, G., Sepulcre, J. M., Ubeda, J. I. and Vidal, T., ‘A note on the real projection of partial sums of Riemann zeta function’, RACSAM 108 (2014) 317333.Google Scholar
Gonek, S. M. and Ledoan, A. H., ‘Zeros of partial sums of the Riemann zeta-function’, Int. Math. Res. Not. IMRN 2010 (2010) no. 10, 17751791.Google Scholar
Gonek, S. M. and Montgomery, H. L., ‘Zeros of a family of approximations of the Riemann zeta-function’, Int. Math. Res. Not. IMRN 2013 (2013) no. 20, 47124733.Google Scholar
Lambov, B., ‘Interval arithmetic using SSE-2’, Reliable implementation of real number algorithms: theory and practice , Lecture Notes in Computer Science (ed. Hertling, P. et al. ; Springer, Berlin, 2008).Google Scholar
Monach, W. R., ‘Numerical investigation of several problems in number theory’, PhD Thesis, University of Michigan, 1980.Google Scholar
Montgomery, H. L., ‘Zeros of approximations to the zeta function’, Studies in pure mathematics: to the memory of Paul Turán (ed. Erdős, P.; Birkhäuser, Basel, 1983) 497506.CrossRefGoogle Scholar
Moore, R. E., Interval analysis (Prentice-Hall, Englewood Cliffs, NJ, 1966).Google Scholar
Muller, J. M., ‘Correctly rounded mathematical library’, http://lipforge.ens-lyon.fr/www/crlibm/.Google Scholar
Sepulcre, J. M. and Vidal, T., ‘A new approach to obtain points of the closure of the real parts of the zeros of the partial sums 1 + 2 z + ⋯ + n z , n⩾2’, Kybernetes 41 (2012) no. 1, 96107.Google Scholar
Spira, R., ‘Zeros of sections of the zeta function I’, Math. Comp. 20 (1966) 542550.Google Scholar
Spira, R., ‘Sets of values of general Dirichlet series’, Duke Math. J. 35 (1968) 7982.Google Scholar
Spira, R., ‘Zeros of sections of the zeta function II’, Math. Comp. 22 (1968) 168173.CrossRefGoogle Scholar
Turán, P., ‘On some approximative Dirichlet-polynomials in the theory of the zeta-function of Riemann’, Danske Vid. Selsk. Math.-Fys. Medd. 24 (1948) no. 17, 136.Google Scholar
van de Lune, J. and te Riele, H. J. J., ‘Numerical computation of special zeros of partial sums of Riemann’s zeta function’, Computational methods in number theory, part II , Mathematical Centre Tracts 155 (Mathematisch Centrum, Amsterdam, 2010) 371387.Google Scholar