No CrossRef data available.
Published online by Cambridge University Press: 13 January 2025
Recently, there has been a surge in interest in exploring how common macroeconomic factors impact different economic results. We propose a semiparametric dynamic panel model to analyze the impact of common regressors on the conditional distribution of the dependent variable (global output growth distribution in our case). Our model allows conditional mean, variance, and skewness to be influenced by common regressors, whose effects can be nonlinear and time-varying driven by contextual variables. By incorporating dynamic structures and individual unobserved heterogeneity, we propose a consistent two-step estimator and showcase its attractive theoretical and numerical properties. We apply our model to investigate the impact of US financial uncertainty on the global output growth distribution. We find that an increase in US financial uncertainty significantly shifts the output growth distribution leftward during periods of market pessimism. In contrast, during periods of market optimism, the increased uncertainty in the US financial markets expands the spread of the output growth distribution without a significant location change, indicating increased future uncertainty.