Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T01:24:01.969Z Has data issue: false hasContentIssue false

Show Us Your Data: Connect the Dots, Improve Science

Published online by Cambridge University Press:  22 June 2018

Sheen S. Levine*
Affiliation:
The University of Texas, Dallas

Extract

‘The truth is under attack’, I wrote earlier this decade (Levine, 2012). As the replication crisis became apparent, the alarm was timely. But now, a counter-attack is raging. In its arsenal are replications, open data, shared instruments, pre-registration of hypotheses and now – data visualizations.

Type
Dialogue, Debate, and Discussion
Copyright
Copyright © The International Association for Chinese Management Research 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anscombe, F. J. 1973. Graphs in statistical analysis. American Statistician, 27 (1): 1721. doi: 10.1080/00031305.1973.10478966Google Scholar
Bettis, R. A. 2012. The search for asterisks: Compromised statistical tests and flawed theories. Strategic Management Journal, 33 (1): 108113. doi: 10.1002/smj.975CrossRefGoogle Scholar
Bettis, R. A., Ethiraj, S., Gambardella, A., Helfat, C., & Mitchell, W. 2016. Creating repeatable cumulative knowledge in strategic management. Strategic Management Journal, 37 (2): 257261. doi: 10.1002/smj.2477CrossRefGoogle Scholar
Camerer, C. F., Dreber, A., Forsell, E., Ho, T.-H., Huber, J., Johannesson, M., . . . Wu, H. 2016. Evaluating replicability of laboratory experiments in economics. Science, 351 (6280): 14331436. doi: 10.1126/science.aaf0918CrossRefGoogle ScholarPubMed
Chang, A. C., & Li, P. 2017. A preanalysis plan to replicate sixty economics research papers that worked half of the time. American Economic Review, 107 (5): 6064. doi: 10.1257/aer.p20171034CrossRefGoogle Scholar
Cook, R. D. 1977. Detection of influential observation in linear regression. Technometrics, 19 (1): 1518. doi: 10.1080/00401706.1977.10489493Google Scholar
Cook, R. D., & Weisberg, S. 1999. Graphs in statistical analysis: Is the medium the message? American Statistician, 53 (1): 2937. doi: 10.1080/00031305.1999.10474426Google Scholar
Cumming, G. 2012. Understanding the new statistics: Effect sizes, confidence intervals, and meta-analysis. New York: Routledge.Google Scholar
Cumming, G. 2014. The new statistics: Why and how. Psychological Science, 25 (1): 729. doi: 10.1177/0956797613504966CrossRefGoogle ScholarPubMed
Eich, E. 2014. Business not as usual. Psychological Science, 25 (1): 36. doi: 10.1177/0956797613512465CrossRefGoogle Scholar
Ethiraj, S. K., Gambardella, A., & Helfat, C. E. 2016. Replication in strategic management. Strategic Management Journal, 37 (11): 21912192. doi: 10.1002/smj.2581CrossRefGoogle Scholar
Gelman, A. 2009. Why tables are really much better than graphs. Retrieved from http://andrewgelman.com/2009/04/01/why_tables_are/Google Scholar
Gelman, A., & Stern, H. 2006. The difference between ‘significant’ and ‘not significant’ is not itself statistically significant. American Statistician, 60 (4): 328331. doi: 10.1198/000313006X152649CrossRefGoogle Scholar
Healy, K. Forthcoming. Data visualization: A practical introduction. Princeton, NJ: Princeton University Press.Google Scholar
Healy, K., & Moody, J. 2014. Data visualization in sociology. Annual Review of Sociology, 40 (1): 105128. doi: 10.1146/annurev-soc-071312-145551CrossRefGoogle ScholarPubMed
John, L. K., Loewenstein, G., & Prelec, D. 2012. Measuring the prevalence of questionable research practices with incentives for truth-telling. Psychological Science, 23 (5): 524532.CrossRefGoogle ScholarPubMed
Kerr, N. L. 1998. Harking: Hypothesizing after the results are known. Personality and Social Psychology Review, 2 (3): 196217. doi: 10.1207/s15327957pspr0203_4CrossRefGoogle ScholarPubMed
Levine, S. S. 2012. Walter R. Nord and Ann F. Connell: Rethinking the knowledge controversy in organization studies: A generative uncertainty perspective. Administrative Science Quarterly, 57 (3): 537540. doi: 10.1177/0001839212462542CrossRefGoogle Scholar
Levine, S. S., Bernard, M., & Nagel, R. 2017. Strategic intelligence: The cognitive capability to anticipate competitor behavior. Strategic Management Journal, 38 (12): 23902423. doi: 10.1002/smj.2660CrossRefGoogle Scholar
Levine, S. S., & Prietula, M. J. 2012. How knowledge transfer impacts performance: A multi-level model of benefits and liabilities. Organization Science, 23 (6): 17481766. doi: 10.1287/orsc.1110.0697CrossRefGoogle Scholar
Levine, S. S., & Prietula, M. J. 2014. Open collaboration for innovation: Principles and performance. Organization Science, 25 (5): 14141433. doi: 10.1287/orsc.2013.0872CrossRefGoogle Scholar
Levinthal, D., & Posen, H. E. 2007. Myopia of selection: Does organizational adaptation limit the efficacy of population selection? Administrative Science Quarterly, 52 (4): 586620.CrossRefGoogle Scholar
Lewin, A. Y., Chiu, C.-Y., Fey, C. F., Levine, S. S., McDermott, G., Murmann, J. P., & Tsang, E. 2016. The critique of empirical social science: New policies at management and organization review. Management and Organization Review, 12 (4): 649658.CrossRefGoogle Scholar
Matejka, J., & Fitzmaurice, G. 2017. Same stats, different graphs: Generating datasets with varied appearance and identical statistics through simulated annealing. Paper presented at the CHI 2017, Denver, CO, USA.CrossRefGoogle Scholar
McShane, B. B., & Gal, D. 2015. Blinding us to the obvious? The effect of statistical training on the evaluation of evidence. Management Science. doi:10.1287/mnsc.2015.2212Google Scholar
Collaboration, Open Science. 2015. Estimating the reproducibility of psychological science. Science, 349 (6251): aac4716. doi: 10.1126/science.aac4716CrossRefGoogle Scholar
Simmons, J. P., Nelson, L. D., & Simonsohn, U. 2011. False-positive psychology: Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Psychological Science, 22 (11): 13591366.CrossRefGoogle ScholarPubMed
Wasserstein, R. L., & Lazar, N. A. 2016. The American Statistical Association statement on p-values: Context, process, and purpose. American Statistician, 70 (2): 129133. doi: 10.1080/00031305.2016.1154108CrossRefGoogle Scholar