Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-10T13:31:26.336Z Has data issue: false hasContentIssue false

Feeding habits of young bluefin tuna (Thunnus thynnus) in the Bay of Biscay inferred from stomach-content and stable-isotope analyses

Published online by Cambridge University Press:  27 October 2014

José Luis Varela*
Affiliation:
Departamento de Biología, Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEI·MAR), Avenida República Saharaui s/n, 11510 Puerto Real, Cádiz, Spain Departamento Central de Investigación, Universidad Laica Eloy Alfaro de Manabí, Avenida de Circunvalación, Manta, Ecuador
Enrique Rodríguez-Marín
Affiliation:
Centro Oceanográfico de Santander, Instituto Español de Oceanografía (IEO), Promontorio de San Martín s/n, 30860, Santander, Spain
Marta Ruiz
Affiliation:
Centro Oceanográfico de Santander, Instituto Español de Oceanografía (IEO), Promontorio de San Martín s/n, 30860, Santander, Spain
Antonio Medina
Affiliation:
Departamento de Biología, Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEI·MAR), Avenida República Saharaui s/n, 11510 Puerto Real, Cádiz, Spain
*
Correspondence should be addressed to:J.L. Varela, Departamento Central de Investigación, Universidad Laica Eloy Alfaro de Manabí, Avenida de Circunvalación, Manta, Ecuador email: joseluis.varela@uca.es
Get access

Abstract

The diet of young Atlantic bluefin tuna (Thunnus thynnus) in the Bay of Biscay foraging ground was assessed using stomach-content analysis (SCA) and stable-isotope analysis coupled with isotope mixing model. Whereas SCA showed that the young tuna fed mainly on horse mackerel (Trachurus trachurus), the estimation of liver and muscle mixing model analyses indicated that northern krill (Meganyctiphanes norvegica) was the most important food resource. These contrasting observations are probably due to the different time scales spanned by the different methods. The present results suggest that young bluefin tuna prey at different trophic levels of the Bay of Biscay pelagic food web, thus behaving as an opportunist and generalist predator.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aloncle, H. and Delaporte, F. (1970) Rythmes alimentaires et circadiens chez le germon Thunnus alalunga (Bonnaterre 1788). Revue des Travaux de l'Institut des Pêches Maritimes 34, 171188.Google Scholar
Amundsen, P.A., Gabler, H.M. and Staldvik, F.J. (1996) A new approach to graphical analysis of feeding strategy from stomach contents data—modification of the Costello (1990) method. Journal of Fish Biology 48, 607614.CrossRefGoogle Scholar
Bode, A., Carrera, P. and Porteiro, C. (2006) Stable nitrogen isotopes reveal weak dependence of trophic position of planktivorous fish on individual size: a consequence of omnivorism and mobility. Radioactivity in the Environment 8, 281293.Google Scholar
Bode, A., Alvarez-Ossorio, M., Cunha, M., Garrido, S., Peleteiro, J., Porteiro, C., Valdes, L. and Varela, M. (2007) Stable nitrogen isotope studies of the pelagic food web on the Atlantic shelf of the Iberian Peninsula. Progress in Oceanography 74, 115131.Google Scholar
Chouvelon, T., Spitz, J., Caurant, F., Mèndez-Fernandez, P., Chappuis, A., Laugier, F., Le Goff, E. and Bustamante, P. (2012 ) Revisiting the use of δ 15N in meso-scale studies of marine food webs by considering spatio-temporal variations in stable isotopic signatures—the case of an open ecosystem: the Bay of Biscay (North-East Atlantic). Progress in Oceanography 101, 92105.Google Scholar
Costello, M.J. (1990) Predator feeding strategy and prey importance: a new graphical analysis. Journal of Fish Biology 36, 261263.Google Scholar
Gannes, L.Z., Martínez del Río, C. and Koch, P. (1998) Natural abundance variations in stable isotopes and their potential uses in animal physiological ecology. Comparative Biochemistry and Physiology 119, 725737.Google Scholar
Goñi, N. and Arrizabalaga, H. (2010) Seasonal and interannual variability of fat content of juvenile albacore (Thunnus alalunga) and bluefin (Thunnus thynnus) tunas during their feeding migration to the Bay of Biscay. Progress in Oceanography 86, 115123.Google Scholar
Goñi, N., Logan, J., Arrizabalaga, H., Jarry, M. and Lutcavage, M. (2011) Variability of albacore (Thunnus alalunga) diet in the Northeast Atlantic and Mediterranean Sea. Marine Biology 158, 10571073.Google Scholar
Graham, B. (2008) Trophic dynamics and movements of tuna in the tropical Pacific Ocean inferred from stable isotope analyses. PhD thesis. University of Hawaii, Manoa, USA.Google Scholar
Guerra, A. (1992) Mollusca, Cephalopoda. In Ramos, M.A. et al. (eds) Fauna Ibérica, Volume 1. Madrid: Museo Nacional de Ciencias Naturales and CSIC, 327 pp., 12 h. lam.Google Scholar
Hastie, L.C., Pierce, G.J., Wang, J., Bruno, I., Moreno, A., Piatkowski, U. and Robin, J.P. (2009) Cephalopods in the north-eastern Atlantic: species, biogeography, ecology, exploitation and conservation. Oceanography and Marine Biology: an Annual Review 47, 111190 Google Scholar
Hobson, K.A., Schell, D.M., Renouf, D. and Noseworthy, E (1996) Stable-carbon and nitrogen isotopic fractionation between diet and tissues of captive seals: implications for dietary reconstructions involving marine mammals. Canadian Journal of Fisheries and Aquatic Sciences 53, 528533.Google Scholar
ICCAT (2012) Report of the standing committee on research and statistics (SCRS) Madrid, Spain, Septiembre 4–11, 2012. Madrid: International Commission for the Conservation of Atlantic Tunas, 134 pp.Google Scholar
Jennings, S., Maxwell, T.A.D., Schratzberger, M. and Milligan, S.P. (2008) Body-size dependent temporal variations in nitrogen stable isotope ratios in food webs. Marine Ecology Progress Series 370, 199206.Google Scholar
Kaartvedt, S., Larsen, T., Hjelmseth, K. and Onsrud, M.S.R. (2002) Is the omnivorous krill Meganyctiphanes norvegica primarily a selectively feeding carnivore? Deep-Sea Research Part I 62, 5369.Google Scholar
Kadye, W.T. and Booth, A. (2012) Integrating stomach content and stable isotope analyses to elucidate the feeding habits of non-native sharptooth catfish Clarias gariepinus . Biological Invasions 14, 779795.Google Scholar
Lauzanne, L. (1975) Régimes alimentaires d'Hydrocyon forskalii (Pisces, Characidae) dans le Lac Tchad et ses tributaires. Cahiers ORSTOM—Série Hydrobiologie 10, 105121.Google Scholar
Logan, J.M., Rodríguez-Marín, E., Goñi, N., Barreiro, S., Arrizabalaga, H., Golet, W. and Lutcavage, M. (2011) Diet of young Atlantic bluefin tuna (Thunnus thynnus) in eastern and western Atlantic foraging grounds. Marine Biology 158, 7385.CrossRefGoogle Scholar
MacNeil, M.A., Gregory, B., Skomal, G.B. and Fisk, A.T. (2005) Stable isotopes from multiple tissues reveal diet switching in sharks. Marine Ecology Progress Series 302, 199206.Google Scholar
Mather, F.J., Mason, J.M. Jr and Jones, A.C. (1995) Historical document: life history and fisheries of Atlantic bluefin tuna. NOAA Technical Memorandum. NMFS-SEFSC-370, Miami, FL. 165 pp.Google Scholar
Minagawa, M. and Wada, E. (1984) Stepwise enrichment of δ15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta 48, 11351140.Google Scholar
Ortiz de Zárate, V. and Cort, J.L. (1986) Stomach contents study of immature bluefin tuna in the Bay of Biscay. ICES-CM H 26, 110.Google Scholar
Ortiz de Zárate, V. (1987) Datos sobre la alimentación del atún blanco (Thunnus alalunga B.) juvenil capturado en el Golfo de Vizcaya. Collective Volume of Scientific Papers ICCAT 26, 243247.Google Scholar
Parnell, A., Inger, R., Bearhop, S. and Jackson, A.L. (2010) Source partitioning using stable isotopes: coping with too much variation. PLoS ONE 5:e9672. doi:10.1371/journal.pone.0009672.Google Scholar
Peterson, B.J. and Fry, B (1987) Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18, 293320.Google Scholar
Phillips, D.L. and Gregg, J.W. (2001) Uncertainty in source partitioning using stable isotopes. Oecologia 127, 171179.Google Scholar
Pinnegar, J.K. and Polunin, N.V.C. (2000) Contributions of stable isotope data to elucidating food webs of Mediterranean rocky littoral fishes. Oecologia 122, 399409.Google Scholar
Rodríguez-Marín, E., Arrizabalaga, H., Ortiz, M., Rodríguez-Cabello, C., Moreno, G. and Kell, L.T. (2003) Standardization of bluefin tuna, Thunnus thynnus, catch per unit effort in the baitboat fishery of the Bay of Biscay (Eastern Atlantic). ICES Journal of Marine Science 60, 12161231.Google Scholar
Rodríguez-Marín, E., Clear, N., Cort, J.L., Megalofonou, P., Neilson, J.D., Neves dos Santos, M., Olafsdottir, D., Rodriguez-Cabello, C., Ruiz, M. and Valeiras, J. (2007) Report of the 2006 ICCAT Workshop for bluefin tuna direct ageing. Collective Volume of Scientific Papers ICCAT 60, 13491392.Google Scholar
Silva, L., Vila, Y., Torres, M.A., Sobrino, I. and Acosta, J.J. (2011) Cephalopod assemblages, abundance and species distribution in the Gulf of Cadiz (SW Spain). Aquatic Living Resources 24, 1326.Google Scholar
Talbot, C. and Higgins, P.J. (1982) Observations on the gall bladder of juvenile Atlantic salmon Salmo salar L., in relation to feeding. Journal of Fish Biology 21, 663669.Google Scholar
Varela, J.L., Larrañaga, A. and Medina, A. (2011) Prey-muscle carbon and nitrogen stable isotope discrimination factors in Atlantic bluefin tuna (Thunnus thynnus). Journal of Experimental Marine Biology and Ecology 406, 2128.Google Scholar
Varela, J.L., de la Gándara, F., Ortega, A. and Medina, A. (2012) 13C and 15N analysis in muscle and liver of wild and reared young-of-the-year (YOY) Atlantic bluefin tuna. Aquaculture 354/355, 1721.Google Scholar
Varela, J.L., Rodríguez-Marín, E. and Medina, A. (2013) Estimating diets of pre-spawning Atlantic bluefin tuna from stomach content and stable isotope analyses. Journal of Sea Research 76, 187192.Google Scholar
Young, J.W. and Davis, T.L.O. (1990) Feeding ecology of larvae of southern bluefin, albacore and skipjack tunas (Pisces: Scombridae). Marine Ecology Progress Series 61, 1729.CrossRefGoogle Scholar