No CrossRef data available.
Article contents
101.02 A (doubly) elementary formula for prime numbers
Published online by Cambridge University Press: 03 February 2017
Abstract
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- Notes
- Information
- Copyright
- Copyright © Mathematical Association 2017
References
1.
Hardy, G. H. and Wright, E. M., An introduction to the theory of numbers, Clarendon Press, Oxford, 4th edition, (1960).Google Scholar
2.
Willans, C. P., On formulae for the n th prime, Math. Gaz., 48(1): pp. 413–415, 1964. http://www.jstor.org/stable/3611701
Google Scholar
3.
Goodstein, R. L. and Wormell, C. P., Formulae for primes. Math. Gaz., 51(1): pp. 35–38, 1967. http://www.jstor.org/stable/3613607
Google Scholar
4.
Gandhi, J. M., Formulae for the n th prime, Proceedings of the Washington State University conference on number theory, pp. 96–107, Pullman, WA, (1971).Google Scholar
5.
Regimbal, S., An explicit formula for the k th prime number, Mathematics Magazine, 48(4) (1975). http://www.jstor.org/stable/2690354
CrossRefGoogle Scholar
6.
Ruiz, S. M. and Sondow, J., Formulas for π(x) and the n th prime, International Journal of Mathematics and Computer Science, 9(2): pp. 95–98 (2014). http://ijmcs.future-in-tech.net/9.2/R-RuizSondow.pdf
Google Scholar
7.
Dusart, P., Autour de la fonction qui comptent les nombres premiers, PhD thesis, Université de Limoges, mai 1998. http://www.unilim.fr/laco/theses/1998/T1998_01.pdf
Google Scholar