Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T01:26:49.739Z Has data issue: false hasContentIssue false

101.02 A (doubly) elementary formula for prime numbers

Published online by Cambridge University Press:  03 February 2017

Yannick Saouter*
Affiliation:
Department of Electrical Engineering, Telecom Bretagne, Technopôle Brest-Iroise, 29238 Brest Cédex 3, France e-mail: Yannick.Saouter@telecom-bretagne.eu

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © Mathematical Association 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hardy, G. H. and Wright, E. M., An introduction to the theory of numbers, Clarendon Press, Oxford, 4th edition, (1960).Google Scholar
2. Willans, C. P., On formulae for the n th prime, Math. Gaz., 48(1): pp. 413415, 1964. http://www.jstor.org/stable/3611701 Google Scholar
3. Goodstein, R. L. and Wormell, C. P., Formulae for primes. Math. Gaz., 51(1): pp. 3538, 1967. http://www.jstor.org/stable/3613607 Google Scholar
4. Gandhi, J. M., Formulae for the n th prime, Proceedings of the Washington State University conference on number theory, pp. 96107, Pullman, WA, (1971).Google Scholar
5. Regimbal, S., An explicit formula for the k th prime number, Mathematics Magazine, 48(4) (1975). http://www.jstor.org/stable/2690354 CrossRefGoogle Scholar
6. Ruiz, S. M. and Sondow, J., Formulas for π(x) and the n th prime, International Journal of Mathematics and Computer Science, 9(2): pp. 9598 (2014). http://ijmcs.future-in-tech.net/9.2/R-RuizSondow.pdf Google Scholar
7. Dusart, P., Autour de la fonction qui comptent les nombres premiers, PhD thesis, Université de Limoges, mai 1998. http://www.unilim.fr/laco/theses/1998/T1998_01.pdf Google Scholar