Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T01:02:09.782Z Has data issue: false hasContentIssue false

101.08 A continued fraction inspired by an identity of Euler

Published online by Cambridge University Press:  03 February 2017

Joseph Tonien*
Affiliation:
Centre for Computer and Information Security Research, School of Computing and Information Technology, University of Wollongong, Australia e-mail: joseph_tonien@uow.edu.au

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © Mathematical Association 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wallis, J., Opera Mathematica, (3 volumes) Oxford (1693-1699).Google Scholar
2. Euler, L., De fractionibus continuis dissertatio, Commentarii academiae scientiarum Petropolitanae 9 (1744) pp. 98137.Google Scholar
3. Euler, L., De fractionibus continuis observationes, Commentarii academiae scientiarum imperialis Petropolitanae 11 (1750) pp. 3281.Google Scholar
4. Euler, L., Introduction to analysis of the infinite: Book I, [Translation of: Introductio in analysin infinitorum by Blanton, John D.], Springer-Verlag (1988).Google Scholar
5. Euler, L., Introduction to analysis of the infinite: Book II, [Translation of: Introductio in analysin infinitorum by Blanton, John D.], Springer-Verlag (1988).Google Scholar
6. Olds, C. D., Continued fractions, The Mathematical Association of America (1963).CrossRefGoogle Scholar
7. Borwein, J. M., van der Poorten, A. J., Shallit, J. O. and Zudilin, W., Neverending fractions: an introduction to continued fractions, Cambridge University Press (2014).Google Scholar