Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-11T09:49:01.231Z Has data issue: false hasContentIssue false

102.04 On the series of Fibonacci reciprocals

Published online by Cambridge University Press:  08 February 2018

J. A. Scott*
Affiliation:
1 Shiptons Lane, Great Somerford, Chippenham SN15 5EJ

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © Mathematical Association 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Eggleston, H. G., Elementary real analysis, Cambridge University Press (1962) Ch. 10.Google Scholar
2. Murphy, R., Accelerating the convergence of some alternating series, Math. Gaz. 95 (March 2011) pp. 9196.CrossRefGoogle Scholar
3. J. M., and Borwein, P. B., Pi and the AGM: a study in analytic number theory and computational complexity, CMS series of monographs and advanced texts, John Wiley (1998).Google Scholar
4. André-Jeannin, R., Irrationalité de la somme des inverses de certaines suites récurrentes, C. R. Sci. Sér. I Math. 308 (1989) pp. 539541.Google Scholar
5. Scott, J. A., Yet another Cantor series, Math. Gaz. 101 (November 2017) pp. 488489.Google Scholar