Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-11T08:37:28.879Z Has data issue: false hasContentIssue false

102.07 Evaluating the probability integral by approximating exp(−x2)

Published online by Cambridge University Press:  08 February 2018

Hsuan-Chi Chen*
Affiliation:
Anderson School of Management, University of New Mexico, Albuquerque, NM 87131, USA e-mail: chenh@unm.edu

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © Mathematical Association 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gustavsson, J. and Sundqvist, M. P., Defining trigonometric functions via complex sequences, Math. Gaz. 100 (March 2016) pp. 923.CrossRefGoogle Scholar
2. Stieltjes, T. J., Note sur l’intégrale Nouvelles Annales de Mathématiques, Série 3, 9 (1890) pp. 479480. http://www.numdam.org/article/NAM_1890_3_9__479_1.pdf Google Scholar
3. Coleman, A. J., The probability integral, Amer. Math. Monthly 61 (1954) pp. 710711.CrossRefGoogle Scholar
4. Spiegel, M. R., Remarks concerning the probability integral, Amer. Math. Monthly 63 (1956) pp. 3537.Google Scholar
5. Levrie, P. and Daems, W., Evaluating the probability integral using Wallis's product formula for π , Amer. Math. Monthly 116 (2009) pp. 538541.Google Scholar
6. Young, R. M., On evaluating the probability integral, Math. Gaz. 95 (July 2011) pp. 311313.Google Scholar
7. Chen, H-C., Newton's semicircle and the probability integral, Math. Gaz. 100 (July 2016) pp. 317321.Google Scholar