Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T09:32:53.014Z Has data issue: false hasContentIssue false

103.44 The denominators of the Bernoulli numbers

Published online by Cambridge University Press:  21 October 2019

G. J. O. Jameson*
Affiliation:
Dept. of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF e-mail: g.jameson@lancaster.ac.uk

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
© Mathematical Association 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

von Staudt, K. G. C., Beweis eines Lehrsatzes, die Bernouillischen Zahlen betreffend, J. Reine Angew. Math. 21 (1840) pp. 372374.Google Scholar
Clausen, T., Theorem, Astron. Nach . 17 (1840) pp. 351352.Google Scholar
Hardy, G. H. and Wright, E. M., An introduction to the theory of numbers , Oxford Univ. Press (1979).Google Scholar
Ireland, Kenneth and Rosen, Michael, A classical introduction to modern number theory , Springer (1982).CrossRefGoogle Scholar
Apostol, Tom M., Introduction to analytic number Theory , Springer (1976).CrossRefGoogle Scholar
Carlitz, L., The Staudt-Clausen theorem, Math. Mag . 34 (1961) pp. 131146.Google Scholar
Lucas, E., Théorie des Nombres , Paris (1891).Google Scholar
Rzadkowski, Grzegorz, A calculus-based approach to the von Staudt-Clausen theorem, Math. Gaz . 94 (July 2010) pp. 308312.CrossRefGoogle Scholar
Gould, H. W., Explicit formulas for the Bernoulli numbers, Amer. Math. Monthly 79 (1972) pp. 4451.Google Scholar
Cameron, P. J., Combinatorics: topics, techniques, algorithms , Cambridge University Press (1994).Google Scholar