Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-11T07:16:52.315Z Has data issue: false hasContentIssue false

105.13 Proximity of the incentre to the inarc centres

Published online by Cambridge University Press:  17 February 2021

Martin Lukarevski*
Affiliation:
Department of Mathematics and Statistics, University ‘Goce Delcev’ - Stip, Macedonia e-mail: martin.lukarevski@ugd.edu.mk

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
© The Mathematical Association 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Leversha, G., The Geometry of the Triangle, UKMT (2013).Google Scholar
Bottema, O., Djordjevic, R. Z., Janic, R. R., Mitrinovic, D. S., Vasic, P. M., Geometric inequalities, Groningen, Wolters-Noordhoff (1969).Google Scholar
Lukarevski, M., An inequality arising from the inarc centres of a triangle, Math. Gaz. 103 (November 2019) pp. 538541.CrossRefGoogle Scholar
Lukarevski, M., An inequality for the altitudes of the excentral triangle, Math. Gaz. 104 (March 2020) pp. 161164.10.1017/mag.2020.22CrossRefGoogle Scholar
Lukarevski, M., An alternate proof of Gerretsen's inequalities, Elem. Math. 72 (1) (2017) pp. 28.CrossRefGoogle Scholar
Lukarevski, M., Exradii of the triangle and Euler's inequality, Math. Gaz. 101 (March 2017) p.123.10.1017/mag.2017.18CrossRefGoogle Scholar
Lukarevski, M., Marinescu, D. S., A refinement of Kooi's inequality, Mittenpunkt and applications, J. Inequal. Appl. 13 (3) (2019) pp. 827832.CrossRefGoogle Scholar
Lukarevski, M., A simple proof of Kooi's inequality, Math. Mag. 93(3) (2020) p. 225.10.1080/0025570X.2020.1736875CrossRefGoogle Scholar