No CrossRef data available.
Article contents
105.13 Proximity of the incentre to the inarc centres
Published online by Cambridge University Press: 17 February 2021
Abstract
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- Notes
- Information
- Copyright
- © The Mathematical Association 2021
References
Bottema, O., Djordjevic, R. Z., Janic, R. R., Mitrinovic, D. S., Vasic, P. M., Geometric inequalities, Groningen, Wolters-Noordhoff (1969).Google Scholar
Lukarevski, M., An inequality arising from the inarc centres of a triangle, Math. Gaz. 103 (November 2019) pp. 538–541.CrossRefGoogle Scholar
Lukarevski, M., An inequality for the altitudes of the excentral triangle, Math. Gaz. 104 (March 2020) pp. 161–164.10.1017/mag.2020.22CrossRefGoogle Scholar
Lukarevski, M., An alternate proof of Gerretsen's inequalities, Elem. Math. 72 (1) (2017) pp. 2–8.CrossRefGoogle Scholar
Lukarevski, M., Exradii of the triangle and Euler's inequality, Math. Gaz. 101 (March 2017) p.123.10.1017/mag.2017.18CrossRefGoogle Scholar
Lukarevski, M., Marinescu, D. S., A refinement of Kooi's inequality, Mittenpunkt and applications, J. Inequal. Appl. 13 (3) (2019) pp. 827–832.CrossRefGoogle Scholar
Lukarevski, M., A simple proof of Kooi's inequality, Math. Mag. 93(3) (2020) p. 225.10.1080/0025570X.2020.1736875CrossRefGoogle Scholar