No CrossRef data available.
Article contents
105.42 Generalised binomial theorem via Laplace transform technique
Published online by Cambridge University Press: 13 October 2021
Abstract
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- Notes
- Information
- Copyright
- © The Mathematical Association 2021
References
Coolidge, J. L., The story of the binomial theorem, Amer. Math. Monthly 56 (1949) pp. 147-157.CrossRefGoogle Scholar
Smoryński, C., A treatise on the binomial theorem, Texts in mathematics, College Publications, London (2012).Google Scholar
Goss, D., The ongoing binomial revolution, In: F. Bars, Longhi, I., Trihan, F., (eds) Arithmetic geometry over global function fields, Advanced Courses in Mathematics, CRM Barcelona, Birkhauser, Basel, (2014).Google Scholar
Fulton, C. M., A simple proof of the binomial theorem, Amer. Math. Monthly 59 (1952) pp. 243-244.CrossRefGoogle Scholar
Rosalsky, A., A simple and probabilistic proof of the binomial theorem, Amer. Statist. 61 (2007) pp. 161-162.CrossRefGoogle Scholar
Hwang, L. C., A simple proof of the binomial theorem using differential calculus, Amer. Statist. 63 (2009) pp. 43-44.Google Scholar
Kataria, K. K., The binomial theorem procured from the solution of an ODE, Math. Magazine 90 (2017) pp. 375-377.10.4169/math.mag.90.5.375CrossRefGoogle Scholar
Kataria, K. K., An alternate proof of the binomial theorem, Amer. Math. Monthly 123 (2016) p. 940.CrossRefGoogle Scholar
Rudin, W., Principles of mathematical analysis (3rd edn.), McGraw-Hill, New York (1976).Google Scholar