Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-11T07:26:39.342Z Has data issue: false hasContentIssue false

105.46 Proximity of the incentre to the excentres and inequality for the circumcevians of the incentre

Published online by Cambridge University Press:  13 October 2021

Martin Lukarevski*
Affiliation:
Department of Mathematics and Statistics, University “Goce Delcev” – Stip, North Macedonia, e-mail: martin.lukarevski@ugd.edu.mk

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
© The Mathematical Association 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lukarevski, M., An inequality for the altitudes of the excentral triangle, Math. Gaz. 104 (March 2020) pp. 161-164.CrossRefGoogle Scholar
Leversha, G., The Geometry of the Triangle, UKMT (2013).Google Scholar
Altshiller-Court, N., College Geometry, Barnes & Noble (1952).Google Scholar
Johnson, R., Advanced Euclidean Geometry. Dover (1960).Google Scholar
Lukarevski, M., An inequality arising from the inarc centres of a triangle, Math. Gaz. 103 (November 2019) pp. 538-541.10.1017/mag.2019.125CrossRefGoogle Scholar
Bottema, O., Djordjevic, R. Z., Janic, R. R., Mitrinovic, D. S., Vasic, P. M., Geometric inequalities, Groningen, Wolters-Noordhoff (1969).Google Scholar
Leuenberger, F., Problem E 1573, Amer. Math. Monthly, Vol.71 (1963), 331; solution by L. Carlitz, ibid Vol. 72 (1964) pp. 93-94.CrossRefGoogle Scholar