Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-14T07:19:03.461Z Has data issue: false hasContentIssue false

2936. On note 2871

Published online by Cambridge University Press:  03 November 2016

J M. Hammersley*
Affiliation:
Institute of Statistics, Oxford

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Mathematical Notes
Copyright
Copyright © Mathematical Association 1960

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Deltheil, R.. Probabilités Géométriques. Traité du Calcul des Probabilités et de ses Applications: Tome II’, Fasciscule II, pp. 114120. Paris: Gauthier-Villars (1926).Google Scholar
[2] Hammersley, J. M.The distribution of distance in a hyper-sphere.” Ann. Math. Statist. 21 (1950) 447452.Google Scholar
[3] Hammersley, J. M.A theorem on multiple integrals.” Proc. Camb. Phil. Soc. 47 (1951) 274278.Google Scholar
[4] Hammersley, J. M.On a certain type of integral associated with circular cylinders.” Proc. Roy. Soc. (A) 210 (1951) 98110.Google Scholar
[5] Hammersley, J M.Lagrangian integration coefficients for distance functions taken over right circular cylinders.” J Math. & Phys. 31 (1952) 139150.Google Scholar
[6] Hammersley, J. M.The absorption of radioactive radiation in rods.” N.B.S. Working Paper 1929 (1952).Google Scholar
[7] Halmos, P R.Measurable transformations.” Bull. Amer Math. Soc. 55 (1949) 10151034.Google Scholar