Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-13T11:44:58.866Z Has data issue: false hasContentIssue false

84.20 A formula for integrating inverse functions

Published online by Cambridge University Press:  01 August 2016

S. Schnell
Affiliation:
Centre for Mathematical Biology, Mathematical Institute, 24-29 St Giles’, Oxford 0X1 3LB email: schnell@maths.ox.ac.uk
C. Mendoza
Affiliation:
Centro de Fisíca, Instituto Venezolano de Investigaciones Científicas (IVIC), PO Box 21827, Caracas 1020A, Venezuela email: claudio@taquion.ivic.ve

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © The Mathematical Association 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Varberg, Dale Sullivan, Michael and Purcell, Edwin J. Calculus with analytical geometry, (7th edn.), Prentice Hall, (1996).Google Scholar
2. Corless, R. M. Gonnet, G. H. Hare, D. E. G. Jeffrey, D. J. and Knuth, D. E. On the Lambert W function, Adv. Comput. Math. 5 (1996) pp. 329359.Google Scholar
3. Ranger, K. B. A complex variable integration technique for the 2-dimensional Navier-Stokes equations, Q. Applied Maths 49 (1991) pp. 555562.CrossRefGoogle Scholar