Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-14T07:47:35.591Z Has data issue: false hasContentIssue false

89.29 An extension of the fundamental theorem on rightangled triangles

Published online by Cambridge University Press:  01 August 2016

Dominic Vella
Affiliation:
194 Buckingham Road, Bletchley MK3 5JB Kernerstrasse 26, 70182, Stuttgart, Germany, e-mail: pythagoras@thevellas.com
Alfred Vella
Affiliation:
194 Buckingham Road, Bletchley MK3 5JB Kernerstrasse 26, 70182, Stuttgart, Germany, e-mail: pythagoras@thevellas.com
Julia Wolf
Affiliation:
194 Buckingham Road, Bletchley MK3 5JB Kernerstrasse 26, 70182, Stuttgart, Germany, e-mail: pythagoras@thevellas.com

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © The Mathematical Association 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Davenport, H. The Higher Arithmetic, Cambridge University Press (1999).Google Scholar
2. Hardy, G. H. and Wright, E. M. Introduction to the theory of numbers (4th edn.), Oxford University Press (1960).Google Scholar
3. Vella, D. and Vella, A. When is n a member of a Pythagorean triple?, Math. Gaz. 87 (March 2003) pp. 102105.Google Scholar
4. Niven, I. and Zuckerman, H. S. An introduction to the theory of numbers (2nd edn.), Wiley (1966).Google Scholar
5. Tattersall, J. J. Elementary number theory in nine chapters, Cambridge University Press (1999).Google Scholar
6. Cameron, P. J. Combinatorics: topics, techniques, algorithms, Cambridge University Press (1994).Google Scholar