Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T07:25:31.728Z Has data issue: false hasContentIssue false

92.59 A recurrence relation for Fibonacci sums: a combinatorial approach

Published online by Cambridge University Press:  01 August 2016

Ángel Plaza
Affiliation:
ULPGC, 35017-Las Palmas G.C., Spain, e-mail: aplaza@dmat.ulpgc.es
Sergio Falcón
Affiliation:
ULPGC, 35017-Las Palmas G.C., Spain, e-mail: aplaza@dmat.ulpgc.es

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © The Mathematical Association 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gray, A. J. A recurrence relation among Fibonacci sums, Math. Gaz. 84 (March, 2000), pp. 8990.Google Scholar
2. Benjamin, A. T. and Quinn, J. J. The Fibonacci Numbers – Exposed More Discretely, Maths Mag. 76 (3) (2003) pp. 182192.Google Scholar
3. Benjamin, A. T. and Quinn, J. J. Proofs that really count: The art of combinatorial proof, Mathematical Association of America, Washington, D.C. (2003).Google Scholar
4. Sloane, N. J. A. The On-Line Encyclopedia of Integer Sequences, published electronically at: http://www.research.att.com/∼njas/sequences/ (2006).Google Scholar
5. Benjamin, A. T. Plott, S. S. and Sellers, J. A. Tiling Proofs of Recent Sum Identities Involving Pell Numbers, The Annals of Combinat., 12 (2008), pp. 271278.Google Scholar