Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-26T07:30:54.226Z Has data issue: false hasContentIssue false

92.71 Geometry of the sums of consecutive integer powers

Published online by Cambridge University Press:  01 August 2016

Stefano Costa*
Affiliation:
via Lanfranco, 12 - 29100 Piacenza - Italy, e-mail: s.costa@bbcstudio.eu

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © The Mathematical Association 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shultz, H. J. The sums of the k th powers of the first k integers, Amer. Math. Monthly, 87, (1980), pp. 478481.Google Scholar
2. Academia Algebræ, 1631 Google Scholar
3. Conway, J. H. and Guy, R. K. The Book of Numbers, Springer-Verlag, 1996.Google Scholar
4. Guo, S. -L. and Qi, F. Recursion formulae for Σ n m =l mk . Zeitschrift für Analysis und ihre Andwendungen, 18, (1999), pp. 11231130,Google Scholar
5. Apostol, T. M. Introduction to Analytic Number Theory, Springer-Verlag, 1995.Google Scholar
6. Abramowitz, M. and Stegun, I. A. The Handbook of Mathematical Functions, Dover, 1972.Google Scholar