Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T01:18:51.314Z Has data issue: false hasContentIssue false

94.19 A calculus-based approach to the von Staudt-Clausen theorem

Published online by Cambridge University Press:  23 January 2015

Grzegorz Rzadkowski*
Affiliation:
Faculty of Mathematics and Natural Sciences, Cardinal Stefan Wyszyński University in Warsaw, Dewajtis 5, 01 - 815 Warsaw, Poland, e-mail:g.rzadkowski@uksw.edu.pl

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes 94.11 to 94.25
Copyright
Copyright © The Mathematical Association 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Graham, R.L., Knuth, D. E. and Patashnik, O., Concrete Mathematics. A Foundation for Computer Science, Addison-Wesley Company, Inc. 1994.Google Scholar
2. von Staudt, K. G. C., Beweis eines Lehrsatzes, die Bernoullischen Zahlen betreffend, J. Reine Angew. Math. 21,1840, pp.372374.Google Scholar
3. Clausen, T., Theorem, Astron. Nach. 17,1840, pp. 351352.Google Scholar
4. Rzadkowski, G., A short proof of the explicit formula for Bernoulli numbers, Amer. Math. Monthly 111, 2004, pp. 433435.CrossRefGoogle Scholar
5. Gould, H. W., Explicit formulas for Bernoulli numbers, Amer. Math. Monthly 79, 1972, pp. 4451.Google Scholar