Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-11T10:36:45.288Z Has data issue: false hasContentIssue false

102.30 A surprising 3-D result involving a hexagon

Published online by Cambridge University Press:  18 June 2018

Michael de Villiers
Affiliation:
Mathematics Education, University of Stellenbosch, South Africa e-mail: profmd@mweb.co.za
Heinz Schumann
Affiliation:
Mathematics Education, University of Education Weingarten, Germany e-mail: schumann@ph-weingarten.de

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © Mathematical Association 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. de Villiers, M., Feedback: More on hexagons with opposite sides parallel, Math. Gaz. 90 (November 2006) pp. 517518. (An interactive, dynamic sketch illustrating the concurrency result mentioned at the start can be accessed online at: http://dynamicmathematicslearning.com/parahex.html )Google Scholar
2. Schumann, H.. Elementary geometry in a virtual area of action (A book about teaching and learning with Cabri 3D on CD). (Schulgeometrie im virtuellen Handlungsraum. Ein Lehr-und Lernbuch der interaktiven Raumgeometrie mit Cabri 3D auf CD.) 2007, Hildesheim: Franzbecker.Google Scholar
3. de Villiers, M., The role and function of proof in mathematics. Pythagoras 24 (November 1990), pp. 1724.Google Scholar