No CrossRef data available.
Published online by Cambridge University Press: 13 October 2021
An infinite simple continued fraction representation of a real number α is in the formwhere  $$\eqalign{& {a_0} + {1 \over {{a_1} + {1 \over {{a_2} + {1 \over {{a_3} + {1 \over {}}}}}}}} \cr & \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \ddots \cr} $$
$$\eqalign{& {a_0} + {1 \over {{a_1} + {1 \over {{a_2} + {1 \over {{a_3} + {1 \over {}}}}}}}} \cr & \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; \ddots \cr} $$ $${a_0}$$ is an integer, and
$${a_0}$$ is an integer, and  $${a_i}$$ are positive integers for
$${a_i}$$ are positive integers for  $$i \ge 1$$. This is often written more compactly in one of the following ways:.
$$i \ge 1$$. This is often written more compactly in one of the following ways:. $${a_0} + {1 \over {{a_1} + }}{1 \over {{a_2} + }}{1 \over {{a_3} + }} \ldots \;{\rm{or}}\;\left[ {{a_0};\;{a_1},\;{a_2},\;{a_3} \ldots } \right]$$
$${a_0} + {1 \over {{a_1} + }}{1 \over {{a_2} + }}{1 \over {{a_3} + }} \ldots \;{\rm{or}}\;\left[ {{a_0};\;{a_1},\;{a_2},\;{a_3} \ldots } \right]$$
 , Amer. Math. Monthly 113(1) (2006) pp. 62-66.Google Scholar
, Amer. Math. Monthly 113(1) (2006) pp. 62-66.Google Scholar