Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-14T07:33:56.527Z Has data issue: false hasContentIssue false

An octet of circles

Published online by Cambridge University Press:  02 November 2015

Michael Sewell*
Affiliation:
University of Reading, Whiteknights, Reading RG6 6AX, e-mail: michael@sewells.org

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Articles
Copyright
Copyright © Mathematical Association 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Pickover, C. A., The Math Book, Sterling, New York (2009).Google Scholar
2. Johnson, R. A., A circle theorem, Amer. Math. Monthly 23, No., 5, pp. 161162 (May 1916).Google Scholar
3. Bogomolny, A., 3 circles having the same radius, Cut-the-knot (2015), available at: http://www.cut-the-knot.org/proofs/3circlesFormal.shtml Google Scholar
4. Bogomolny, A., Orthocenter and three equal circles, Cut-the-knot (2015), available at: http://www.cut-the-knot.com/Curriculum_Geometry/EqualCirclesOrthocenter.shtml Google Scholar
5. Mackenzie, D. N., Triquetras and Porisms, The College Mathematics Journal 23 (March 1992) pp. 118131, available at http://www.maa.org/sites/default/.les/pdf/uploadlibrary/22/Polya/07468342.di020751.02p00864.pdf Google Scholar
6. Wikipedia, Johnson circles (2014) available at http://en.wikipedia.org/wiki/Johnson_circles Google Scholar