Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-14T17:45:19.427Z Has data issue: false hasContentIssue false

The attractor property and matrix equations: an empirical approach

Published online by Cambridge University Press:  01 August 2016

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Notes
Copyright
Copyright © The Mathematical Association 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Peitgen, H.-O. The beauty of fractals: images of complex dynamical systems, Springer Verlag, Berlin (1988).Google Scholar
2. MacDuffee, C. C. The theory of matrices, Chelsea, New York (1946).Google Scholar
3. Davis, G. J. Numerical solution of a quadratic matrix equation, SIAM J. Sci. Statis. Comput. 2: (1971) pp. 164175.Google Scholar
4. Björk, A. and Hammarling, S. A Schur method for the square root of a matrix, Lin. Alg. Appl. 52/53: (1983) pp. 127140.Google Scholar
5. Boyer, Carl B. A history of mathematics, Wiley (1968).Google Scholar
6. Newton, I. Philosophiae naturalis principia mathematica, (1687).CrossRefGoogle Scholar
7. Gray, G. T. Bibliography of the works of Newton (2nd edn.) (1907).Google Scholar