Published online by Cambridge University Press: 21 October 2019
Which is your favourite formula in triangle geometry? Mine is definitely the formula for the area of triangle OIH . It is well known that the perpendicular bisectors to the sides of any triangle are concurrent at a point O (centre of the circumcircle), that the angle bisectors to the vertex angles are concurrent at a point I (centre of the incircle), and that the altitudes are concurrent at a point H. If the triangle is not isosceles, then these three points are all different and uniquely determine a new triangle OIH (see Figure 1), whose area can be expressed in terms of the sides a, b, c of the original triangle. I derived such a formula 20 years ago, and later found out that it had been studied a century earlier.