Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-14T09:07:19.586Z Has data issue: false hasContentIssue false

The first derivative test and the classification of stationary points

Published online by Cambridge University Press:  12 November 2024

Lorenzo Di Biagio*
Affiliation:
Luiss ‘Guido Carli’, Viale Romania 32, 00197, Roma, Italy e-mail: ldibiagio@luiss.it
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Given a real differentiable function f we say that a point x0 is a stationary point of f if f′ (x0) = 0.

In any standard single-variable calculus class, students learn how to determine the nature of a stationary point by checking the sign of f(x) in intervals to the left and to the right of the stationary point. In doing so, they are performing the first derivative test.

Type
Articles
Copyright
© The Authors, 2024 Published by Cambridge University Press on behalf of The Mathematical Association

References

Stationary Point, Wikipedia, accessed March 2024 at https://en.wikipedia.org/wiki/Stationary_point Google Scholar
First Derivative Test, Wolfram-Mathworld, accessed March 2024 at https://mathworld.wolfram.com/FirstDerivativeTest.html Google Scholar
Giuseppe De Marco, Analisi uno, Zanichelli, (1996).Google Scholar
Skurnick, Ronald and Roethel, Christopher, A more conclusive and more inclusive second derivative test, Math. Gaz., 104 (July 2020) pp. 247-254.CrossRefGoogle Scholar
Conway, John B., A first course in analysis, Cambridge University Press (2017).CrossRefGoogle Scholar
Lorenzo Di Biagio, Differentiability and continuity of the derivative, Periodico di Matematiche, (2020) pp. 923.Google Scholar
Gelbaum, Bernard R. and Olmsted, John M. H., Counterexamples in analysis, Dover (2003).Google Scholar
Tao, T., Analysis II , Texts and readings in mathematics, Hindustan Book Agency (2022).Google Scholar
Gkioulekas, Eleftherios, Generalized local test for local extrema in single-variable functions, International journal of Mathematical Education in Science and Technology, 45(1) (2014) pp. 118131.CrossRefGoogle Scholar