No CrossRef data available.
Article contents
A group structure on the golden triples
Published online by Cambridge University Press: 17 February 2021
Extract
Some favourite topics of both mathematics teachers and mathematics students are the golden ratio, Fibonacci numbers, groups, and Pythagorean triples. The material of this paper involves the first three, and there are some analogies with the fourth.
- Type
- Articles
- Information
- Copyright
- © The Mathematical Association 2021
References
Cuoco, A. A., Meta-problems in mathematics, College Mathematics Journal 31 (2000) pp. 373–378.CrossRefGoogle Scholar
Read, E., On integer-sided triangles containing angles of 120° or 60°, Math. Gaz. 90 (July 2006) pp. 299–305.CrossRefGoogle Scholar
Fässler, A., Multiple Pythagorean number triples, American Mathematical Monthly 98 (1991) pp. 505–517.CrossRefGoogle Scholar
Eckert, E. J., The group of primitive Pythagorean triples, Mathematics Magazine 57 (1984) pp. 22–27.CrossRefGoogle Scholar
Tan, L., The group of rational points on the unit circle, Mathematics Magazine 69 (1996) pp. 163–171.10.1080/0025570X.1996.11996421CrossRefGoogle Scholar
Lehrer, G. I. and Taylor, D. E., Unitary reflection groups, Cambridge University Press (2009).Google Scholar
Rokhsar, D. S., Mermin, N. D., and Wright, D. C., Rudimentary quasicrystallography: the icosahedral and decagonal reciprocal lattices, Physical Review B: Condensed Matter 35 (1987) pp. 5487–5495.CrossRefGoogle ScholarPubMed
Ling, S. and Solé, P., Type II Codes over F 4 + uF 4, Europ. J. Combinatorics 22 (2001) pp. 983–997.10.1006/eujc.2001.0509CrossRefGoogle Scholar
Koshy, T., Fibonacci and Lucas numbers with applications, John Wiley, New York (2001).CrossRefGoogle Scholar
Dickson, L. E., History of the Theory of Numbers, Volume 1, Chelsea Publishing Company, New York (1952).Google Scholar
Vajda, S., Fibonacci and Lucas Numbers and the Golden Section, Dover, Mineola, NY (1989).Google Scholar