Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-14T07:39:52.259Z Has data issue: false hasContentIssue false

The Heron parameters of a triangle

Published online by Cambridge University Press:  10 July 2015

Alan F. Beardon
Affiliation:
Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB e-mail: afb@dpmms.cam.ac.uk
Paul Stephenson
Affiliation:
Böhmerstraße 66, 45144, Essen, Germany e-mail: stephenson-mathcircus@t-online.de
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Articles
Copyright
Copyright © Mathematical Association 2015 

References

1.Sloane, N. J. A., The on-line encyclopedia of integer sequences, accessed February 2015 at http://oeis.org/A120062.Google Scholar
2.Burn, R. P., Triangles, Faux, Mathematics Teaching, MT 241 (July 2014).Google Scholar
3.Stephenson, P., Alan Beardon’s Problem, Mathematics Teaching, MT 241 (July 2014), electronic supplement MT Extra (5).Google Scholar
4.Dickson, L. E., Lowest integers representing sides of a right triangle, Amer. Math. Monthly 1 (1894) pp. 611.Google Scholar
5.Burton, D. M., Elementary number theory (2nd edn.), Wm. C. Brown, Dubuque, Iowa (1989).Google Scholar
6.Gerstein, L. J., Pythagorean triples and inner products, Math. Mag. 78 (2005) pp. 205213.Google Scholar
7.Hardy, G. H. and Wright, E. M., An introduction to the theory of numbers (5th edn.), Clarendon Press, Oxford (1979).Google Scholar