Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T01:17:33.662Z Has data issue: false hasContentIssue false

The standard deviation of 1, 2, … , n – Pell's equation and rational triangles

Published online by Cambridge University Press:  01 August 2016

E. Keith Lloyd*
Affiliation:
Faculty of Mathematical Studies, University of SouthamptonSO17 1BJ, e-mail: ekl@soton.ac.uk

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Articles
Copyright
Copyright © The Mathematical Association 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cyvin, S.J., Cyvin, B.N., Brunvoll, J., Lloyd, E.K., Circumscribing certain polygonal systems, Discrete Applied Math. 67, (1996) pp. 6778.Google Scholar
2. Sloane, N.J.A., Plouffe, S., Encyclopedia of integer sequences, Academic Press, San Diego, (1995).Google Scholar
3. Greville, T.N.F., Table for third-degree spline interpolation with equally spaced arguments, Mathematics of Computation 24 (1970) pp. 179183.Google Scholar
4. Hoskins, W.D., Table for third-degree spline interpolation using equi-spaced knots, Mathematics of Computation 25 (1971) pp. 797801.CrossRefGoogle Scholar
5. Dudley, U., Elementary number theory, 2nd ed., Freeman, San Francisco CA, (1978).Google Scholar
6. Anderson, I., A First course in combinatorial mathematics, Clarendon Press, Oxford, (1974).Google Scholar
7. Dickson, L.E., History of the theory of numbers, 3 Vols, Carnegie Institute Publications 256, Washington DC, (1919–1923); reprinted: Chelsea, New York, (1952).Google Scholar
8. Hoppe, R., Rationales Dreieck, dessen Seiten auf einander folgende ganze Zahlen sind, Archiv Math. Phys. 64 (1879) pp. 441443.Google Scholar