Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Berlekamp, Elwyn R.
Conway, John H.
and
Guy, Richard K.
1986.
Gewinnen Strategien für mathematische Spiele.
p.
31.
Coxeter, H.S.M.
1989.
Trisecting an orthoscheme.
Computers & Mathematics with Applications,
Vol. 17,
Issue. 1-3,
p.
59.
Ladas, G.
1995.
Open problems and conjectures.
Journal of Difference Equations and Applications,
Vol. 1,
Issue. 2,
p.
209.
Bernhart, Frank R.
1999.
Catalan, Motzkin, and Riordan numbers.
Discrete Mathematics,
Vol. 204,
Issue. 1-3,
p.
73.
Baur, Karin
and
Marsh, Bethany R.
2009.
Frieze patterns for punctured discs.
Journal of Algebraic Combinatorics,
Vol. 30,
Issue. 3,
p.
349.
Assem, Ibrahim
Reutenauer, Christophe
and
Smith, David
2010.
Friezes.
Advances in Mathematics,
Vol. 225,
Issue. 6,
p.
3134.
Assem, Ibrahim
and
Dupont, Grégoire
2011.
Friezes and a construction of the Euclidean cluster variables.
Journal of Pure and Applied Algebra,
Vol. 215,
Issue. 10,
p.
2322.
Keller, Bernhard
and
Scherotzke, Sarah
2011.
Linear recurrence relations for cluster variables of affine quivers.
Advances in Mathematics,
Vol. 228,
Issue. 3,
p.
1842.
Baur, Karin
and
Marsh, Bethany Rose
2012.
Categorification of a frieze pattern determinant.
Journal of Combinatorial Theory, Series A,
Vol. 119,
Issue. 5,
p.
1110.
ASSEM, IBRAHIM
DUPONT, GRÉGOIRE
SCHIFFLER, RALF
and
SMITH, DAVID
2012.
FRIEZES, STRINGS AND CLUSTER VARIABLES.
Glasgow Mathematical Journal,
Vol. 54,
Issue. 1,
p.
27.
Beardon, A. F.
2013.
Frieze groups, cylinders, and quotient groups.
The Mathematical Gazette,
Vol. 97,
Issue. 538,
p.
95.
Holm, Thorsten
and
Jørgensen, Peter
2013.
SL2-tilings and triangulations of the strip.
Journal of Combinatorial Theory, Series A,
Vol. 120,
Issue. 7,
p.
1817.
Guo, L.
2013.
On Tropical Friezes Associated with Dynkin Diagrams.
International Mathematics Research Notices,
Vol. 2013,
Issue. 18,
p.
4243.
Bessenrodt, Christine
Holm, Thorsten
and
Jørgensen, Peter
2014.
Generalized frieze pattern determinants and higher angulations of polygons.
Journal of Combinatorial Theory, Series A,
Vol. 123,
Issue. 1,
p.
30.
Cecotti, Sergio
and
Zotto, Michele Del
2014.
Y-systems,Q-systems, and 4D $\mathcal {N}=2$ supersymmetric QFT.
Journal of Physics A: Mathematical and Theoretical,
Vol. 47,
Issue. 47,
p.
474001.
Holm, Thorsten
and
Jørgensen, Peter
2015.
Generalized friezes and a modified Caldero–Chapoton map depending on a rigid object.
Nagoya Mathematical Journal,
Vol. 218,
Issue. ,
p.
101.
Holm, Thorsten
and
Jørgensen, Peter
2015.
Generalized friezes and a modified Caldero–Chapoton map depending on a rigid object.
Nagoya Mathematical Journal,
Vol. 218,
Issue. ,
p.
101.
Bessenrodt, Christine
2015.
Conway–Coxeter friezes and beyond: Polynomially weighted walks around dissected polygons and generalized frieze patterns.
Journal of Algebra,
Vol. 442,
Issue. ,
p.
80.
Baur, Karin
Parsons, Mark J.
and
Tschabold, Manuela
2016.
Infinite friezes.
European Journal of Combinatorics,
Vol. 54,
Issue. ,
p.
220.
Bessenrodt, Christine
Holm, Thorsten
and
Jørgensen, Peter
2017.
All SL2-tilings come from infinite triangulations.
Advances in Mathematics,
Vol. 315,
Issue. ,
p.
194.