Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-14T07:31:57.319Z Has data issue: false hasContentIssue false

Wolstenholme’s inequality and its relation to the Barrow and Garfunkel-Bankoff inequalities

Published online by Cambridge University Press:  16 February 2023

Martin Lukarevski*
Affiliation:
Department of Mathematics and Statistics, University ‘Goce Delcev’, Stip 2000, North Macedonia e-mail: martin.lukarevski@ugd.edu.mk
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Many readers are familiar with the celebrated Finsler-Hadwiger and Weitzenböck’s inequality in triangle geometry. On the other hand, Wolstenholme’s inequality is not widely known, but is equally important and in an indirect way can be used to derive these two. We will introduce it and then show its strength.

Type
Articles
Copyright
© The Authors, 2023. Published by Cambridge University Press on behalf of The Mathematical Association

References

Wolstenholme, J., A book of mathematical problems, Cambridge (1867).Google Scholar
Erdős, P., Problem 3740, Amer. Math. Monthly, 42 (1935) p. 396; solution by L. J. Mordell, D. Barrow, ibid 44 (1937) pp. 252-254.Google Scholar
Andreescu, T., Mushkarov, O., Topics in geometric inequalities, XYZ Press (2019).Google Scholar
Garfunkel, J., Crux Math. 9(3) (1983), Problem 825, p. 79; solution by L. Bankoff, ibid 10(5) (1984), p. 168.Google Scholar
Lukarevski, M., A simple proof of Kooi’s inequality, Math. Mag. 93(3) (2020) p. 225.CrossRefGoogle Scholar
Lukarevski, M., Marinescu, D. S., A refinement of the Kooi’s inequality, Mittenpunkt and applications, J. Inequal. Appl. 13(3) (2019) pp. 827832.CrossRefGoogle Scholar
Finsler, P., Hadwiger, H., Einige Relationen im Dreieck, Commentarii Mathematici Helvetici, 10(1) (1937) pp. 316326.CrossRefGoogle Scholar
Lukarevski, M., Wanner, G., Mixtilinear radii and Finsler-Hadwiger inequality, Elem. Math. 75 (2020) pp. 121124.Google Scholar
Lukarevski, M., Exarc radii and the Finsler-Hadwiger inequality, Math. Gaz. 106 (March 2022) pp. 132-143.CrossRefGoogle Scholar
Lukarevski, M., An alternate proof of Gerretsen’s inequalities, Elem. Math. 72(1), (2017) pp. 28.CrossRefGoogle Scholar
Lukarevski, M., Proximity of the incentre to the inarc centres, Math. Gaz. 105 (March 2021) pp. 142-147.CrossRefGoogle Scholar
Leversha, G., The geometry of the triangle, UKMT (2013).Google Scholar
Xuan Tho, N., A proof of Lukarevski’s conjecture, Math. Gaz. 106 (March 2022) pp. 143-147.CrossRefGoogle Scholar
Lukarevski, M., An inequality for the altitudes of the excentral triangles, Math. Gaz. 104 (March 2020) pp. 161-164.CrossRefGoogle Scholar
Weitzenböck, R., Uber eine Ungleichung in der Dreiecksgeometrie, Math. Zeitschr. 5 (1919) pp. 137146.CrossRefGoogle Scholar
Lukarevski, M., The excentral triangle and a curious application to inequalities, Math. Gaz. 102 (November 2018) pp. 531-533.CrossRefGoogle Scholar
Lukarevski, M., The circummidarc triangle and the Finsler-Hadwiger inequality, Math. Gaz. 104 (July 2020) pp. 335-338.CrossRefGoogle Scholar
Engel, A., Problem-solving strategies, Springer-Verlag (1998).Google Scholar