No CrossRef data available.
Article contents
Yet more characterisations of parallelograms
Published online by Cambridge University Press: 03 July 2023
Extract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
This article, like our previous one [1], combines known and new characterisations of parallelograms. Both can be thought of as additions to Martin Josefsson’s series on ‘characterisations of’ and ‘properties of’ various types of quadrilaterals – a series that does not include parallelograms. Josefsson’s publications can be found listed in [2], [3] and [4]. For the importance of characterisations in geometry, see [5].
- Type
- Articles
- Information
- Copyright
- © The Authors, 2023. Published by Cambridge University Press on behalf of The Mathematical Association
References
Hajja, M. and Krasopoulos, P. T., More characterisations of parallelograms, Math. Gaz. 107 (March 2023) pp. 76–83.Google Scholar
Josefsson, M., The importance of characterisations in geometry, Math. Gaz. 102 (July 2018) pp. 302–307.CrossRefGoogle Scholar
Viglione, R., The Thébault configuration keeps on giving, Math. Gaz. 104 (March 2020) pp. 74–81.CrossRefGoogle Scholar
Viglione, R., An extension of the Thébault second problem, Math. Gaz. 103 (July 2019) pp. 343–346.CrossRefGoogle Scholar
Van Aubel, M. H., Note concernant les centres de carrés construits sur le côtés d’un polygone quelqonque, Nouvelles Corresp. Math. 4 (1878) pp. 40–44.Google Scholar
Finney, R. L., Dynamical proofs of Euclidean theorems, Math. Mag. 43 (1970) pp. 177–185.CrossRefGoogle Scholar
Al-Afifi, Gh., Hajja, M., and Hamdan, A., Another n-dimensional generalization of Pompeiu’s theorem, Amer. Math. Monthly 125 (2018) pp. 612–622.CrossRefGoogle Scholar
Al-Afifi, Gh., Hajja, M., Hamdan, A. and Krasopoulos, P. T., Pompeiulike theorems for the medians of a simplex, Math. Ineq. Appl., 21 (2018) pp. 539–552.Google Scholar
Fomin, D., Genkin, S. and Itenberg, I., Mathematical circles (Russian experience), Amer. Math. Society (1996).CrossRefGoogle Scholar
Pop, O. T., Minculete, N. and Bencze, M., An introduction to quadrilateral geometry, Editura Dedicata si Pedagigica, Romania (2013).Google Scholar
You have
Access