Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-28T00:22:18.220Z Has data issue: false hasContentIssue false

Boundary Data Maps for Schrödinger Operators on a CompactInterval

Published online by Cambridge University Press:  12 May 2010

S. Clark
Affiliation:
Department of Mathematics & Statistics, Missouri University of Science and Technology Rolla, MO 65409, USA
F. Gesztesy*
Affiliation:
Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
M. Mitrea*
Affiliation:
Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
*
* Corresponding author. E-mail:gesztesyf@missouri.edu
Get access

Abstract

We provide a systematic study of boundary data maps, that is, 2 × 2 matrix-valuedDirichlet-to-Neumann and more generally, Robin-to-Robin maps, associated withone-dimensional Schrödinger operators on a compact interval [0, R] withseparated boundary conditions at 0 and R. Most of our results areformulated in the non-self-adjoint context.

Our principal results include explicit representations of these boundary data maps interms of the resolvent of the underlying Schrödinger operator and the associated boundarytrace maps, Krein-type resolvent formulas relating Schrödinger operators corresponding todifferent (separated) boundary conditions, and a derivation of the Herglotz property ofboundary data maps (up to right multiplication by an appropriate diagonal matrix) in thespecial self-adjoint case.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Dedicated with deep admiration to the memory of Mikhail Sh. Birman(1928-2009)

References

N. I. Akhiezer, I. M. Glazman. Theory of linear operators in Hilbert space, Volume II. Pitman, Boston, 1981.
Albeverio, S., Brasche, J. F., Malamud, M. M., Neidhardt, H.. Inverse spectral theory for symmetric operators with several gaps: scalar-type Weyl functions . J. Funct. Anal., 228 (2005), 144188. CrossRefGoogle Scholar
Alpay, D., Behrndt, J.. Generalized Q -functions and Dirichlet-to-Neumann maps for elliptic differential operators . J. Funct. Anal., 257 (2009), 16661694. CrossRefGoogle Scholar
Amrein, W. O., Pearson, D. B.. M operators: a generalisation of Weyl–Titchmarsh theory . J. Comp. Appl. Math., 171 (2004), 126.CrossRefGoogle Scholar
Arlinskiĭ, Yu. M., Tsekanovskiĭ, E. R.. On von Neumann’s problem in extension theory of nonnegative operators . Proc. Amer. Math. Soc., 131 (2003), 31433154. CrossRefGoogle Scholar
Arlinskiĭ, Yu. M., Tsekanovskiĭ, E. R.. The von Neumann problem for nonnegative symmetric operators. Integr. Eq. Operator Th., 51 (2005), 319356. CrossRefGoogle Scholar
Avdonin, S. A., Belishev, M. I., Ivanov, S. A.. Boundary control and a matrix inverse problem for the equation u tt u xx + V(x)u = 0. Math. USSR Sbornik, 72 (1992), 287310. CrossRefGoogle Scholar
Avdonin, S., Kurasov, P.. Inverse problems for quantum trees. Inverse Probl. Imaging, 2 (2008), 121. Google Scholar
Avdonin, S., Lenhart, S., Protopopescu, V.. Solving the dynamical inverse problem for the Schrödinger equation by the boundary control method . Inverse Probl., 18 (2002), 349361. CrossRefGoogle Scholar
Avdonin, S., Lenhart, S., Protopopescu, V.. Determining the potential in the Schrödinger equation from the Dirichlet to Neumann map by the boundary control method . J. Inv. Ill-Posed Probl., 13 (2005), 114. Google Scholar
Behrndt, J., Langer, M.. Boundary value problems for partial differential operators on bounded domains . J. Funct. Anal., 243 (2007), 536565. CrossRefGoogle Scholar
Behrndt, J., Malamud, M. M., Neidhardt, H.. Scattering matrices and Weyl functions . Proc. London Math. Soc., 97 (2008), No. 3, 568598. CrossRefGoogle Scholar
J. F. Brasche, M. M. Malamud, H. Neidhardt.Weyl functions and singular continuous spectra of self-adjoint extensions in Stochastic processes, physics and geometry: New interplays. II. A volume in honor of Sergio Albeverio. F. Gesztesy, H. Holden, J. Jost, S. Paycha, M. Röckner, S. Scarlatti (eds.). Canadian Mathematical Society Conference Proceedings, Vol. 29, Amer. Math. Soc., Providence, RI, 2000, pp. 75–84.
Brasche, J. F., Malamud, M. M., Neidhardt, H.. Weyl function and spectral properties of self-adjoint extensions . Integral Eq. Operator Th., 43 (2002), 264289. CrossRefGoogle Scholar
Brown, B. M., Grubb, G., Wood, I. G.. M -functions for closed extensions of adjoint pairs of operators with applications to elliptic boundary problems . Math. Nachr., 282 (2009), 314347. CrossRefGoogle Scholar
Brown, M., Hinchcliffe, J., Marletta, M., Naboko, S., Wood, I.. The abstract Titchmarsh–Weyl M-function for adjoint operator pairs and its relation to the spectrum . Integral Equ. Operator Th., 63 (2009), 297320. CrossRefGoogle Scholar
Brown, B. M., Marletta, M.. Spectral inclusion and spectral exactness for PDE’s on exterior domains . IMA J. Numer. Anal., 24 (2004), 2143. CrossRefGoogle Scholar
Brown, B. M., Marletta, M., Naboko, S., Wood, I.. Boundary triplets and M-functions for non-selfadjoint operators, with applications to elliptic PDEs and block operator matrices . J. London Math. Soc., 77 (2008), No. 2, 700718. CrossRefGoogle Scholar
Brüning, J., Geyler, V., Pankrashkin, K.. Spectra of self-adjoint extensions and applications to solvable Schrödinger operators . Rev. Math. Phys., 20 (2008), 170. CrossRefGoogle Scholar
R. Carmona, J. Lacroix. Spectral theory of random Schrödinger operators. Birkhäuser, Basel, 1990.
Clark, S., Gesztesy, F.. Weyl–Titchmarsh M-function asymptotics and Borg-type theorems for Dirac operators . Trans. Amer. Math. Soc., 354 (2002), 34753534.CrossRefGoogle Scholar
S. Clark, F. Gesztesy.On self-adjoint and J -self-adjoint Dirac-type operators: A case study, in Recent advances in differential equations and mathematical physics. N. Chernov, Y. Karpeshina, I. W. Knowles, R. T. Lewis, R. Weikard (eds.). Contemp. Math., Vol. 412, Amer. Math. Soc., Providence, RI, 2006, pp. 103–140.
E. A. Coddington, N. Levinson. Theory of ordinary differential equations. Krieger, Malabar, 1985.
Derkach, V. A., Hassi, S., Malamud, M. M., de Snoo, H. S. V.. Generalized resolvents of symmetric operators and admissibility . Meth. Funct. Anal. Top., 6 (2000), No.3, 2455. Google Scholar
Derkach, V., Hassi, S., Malamud, M., de Snoo, H.. Boundary relations and their Weyl families. Trans. Amer. Math. Soc., 358 (2006), 53515400. CrossRefGoogle Scholar
Derkach, V. A., Malamud, M. M.. Generalized resolvents and the boundary value problems for Hermitian operators with gaps . J. Funct. Anal., 95 (1991), 195. CrossRefGoogle Scholar
Derkach, V. A., Malamud, M. M.. Characteristic functions of almost solvable extensions of Hermitian operators . Ukrain. Math. J., 44 (1992), 379401. CrossRefGoogle Scholar
Derkach, V. A., Malamud, M. M.. The extension theory of Hermitian operators and the moment problem . J. Math. Sci., 73 (1995), 141242. CrossRefGoogle Scholar
N. Dunford, J. T. Schwartz. Linear operators Part II: Spectral theory. Interscience, New York, 1988.
C. Fox, V. Oleinik, B. Pavlov.A Dirichlet-to-Neumann map approach to resonance gaps and bands of periodic networks, in Recent advances in differential equations and mathematical physics. N. Chernov, Y. Karpeshina, I. W. Knowles, R. T. Lewis, R. Weikard (eds.). Contemp. Math. Vol. 412, Amer. Math. Soc., Providence, RI, 2006, pp. 151–169.
F. Gesztesy, H. Holden. Soliton equations and their algebro-geometric solutions. Volume I: (1 + 1)-Dimensional continuous models. Cambridge Studies in Advanced Mathematics, Vol. 79, Cambridge University Press, Cambridge, 2003.
Gesztesy, F., Holden, H., Simon, B., Zhao, Z.. Higher order trace relations for Schrödinger operators . Rev. Math. Phys., 7 (1995), 893922. CrossRefGoogle Scholar
F. Gesztesy, N. J. Kalton, K. A. Makarov, E. Tsekanovskii.Some applications of operator-valued Herglotz functions, in Operator theory, system theory and telated topics. The Moshe Livšic anniversary volume. D. Alpay, V. Vinnikov (eds.). Operator Theory: Advances and Applications, Vol. 123, Birkhäuser, Basel, 2001, pp. 271–321.
Gesztesy, F., Makarov, K. A., Tsekanovskii, E.. An Addendum to Krein’s formula . J. Math. Anal. Appl., 222 (1998), 594606. CrossRefGoogle Scholar
F. Gesztesy, M. Mitrea.Generalized Robin boundary conditions, Robin-to-Dirichlet maps, and Krein-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains, in Perspectives in partial differential equations, harmonic analysis and applications: A volume in honor of Vladimir G. Maz’ya’s 70th birthday. D. Mitrea, M. Mitrea (eds.). Proceedings of Symposia in Pure Mathematics, Vol. 79, Amer. Math. Soc., Providence, RI, 2008, pp. 105–173.
F. Gesztesy, M. Mitrea.Robin-to-Robin maps and Krein-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains, in Modern analysis and applications. The Mark Krein cetenary conference, Vol. 2. V. Adamyan, Y. M. Berezansky, I. Gohberg, M. L. Gorbachuk, V. Gorbachuk, A. N. Kochubei, H. Langer, G. Popov (eds.). Operator Theory: Advances and Applications, Vol. 191, Birkhäuser, Basel, 2009, pp. 81–113.
Gesztesy, F., Mitrea, M.. Nonlocal Robin Laplacians and some remarks on a paper by Filonov on eigenvalue inequalities . J. Diff. Eq., 247 (2009), 28712896. CrossRefGoogle Scholar
F. Gesztesy, M. Mitrea.Self-adjoint extensions of the Laplacian and Krein-type resolvent formulas in nonsmooth domains. Preprint, 2009.
Gesztesy, F., Mitrea, M., Zinchenko, M.. Variations on a theme of Jost and Pais . J. Funct. Anal., 253 (2007), 399448. CrossRefGoogle Scholar
F. Gesztesy, R. Ratnaseelan, G. Teschl.The KdV hierarchy and associated trace formulas, in Recent developments in operator theory and its applications. I. Gohberg, P. Lancaster, and P. N. Shivakumar (eds.). Operator Theory: Advances and Applications, Vol. 87, Birkhäuser, Basel, 1996, pp. 125–163.
Gesztesy, F., Simon, B.. Uniqueness theorems in inverse spectral theory for one-dimensional Schrödinger operators . Trans. Amer. Math. Soc., 348 (1996), 349373. CrossRefGoogle Scholar
Gesztesy, F., Tsekanovskii, E.. On matrix-valued Herglotz functions . Math. Nachr., 218 (2000), 61138. 3.0.CO;2-D>CrossRefGoogle Scholar
F. Gesztesy and M. Zinchenko, Boundary Data Maps, Perturbation Determinants, and Krein-Type Resolvent Formulas for Schrödinger Operators on Compact Intervals, preprint, 2010.
V. I. Gorbachuk, M. L. Gorbachuk. Boundary value problems for operator differential equations. Kluwer, Dordrecht, 1991.
Grubb, G.. Krein resolvent formulas for elliptic boundary problems in nonsmooth domains . Rend. Semin. Mat. Univ. Politec. Torino, 66 (2008), 271297. Google Scholar
G. Grubb. Distributions and operators. Graduate Texts in Mathematics, Vol. 252, Springer, New York, 2009.
T. Kato. Perturbation theory for linear operators. Corr. printing of the 2nd ed., Springer, Berlin, 1980.
Kiselev, A., Simon, B.. Rank one perturbations with infinitesimal coupling . J. Funct. Anal., 130 (1995), 345356. CrossRefGoogle Scholar
Krein, M. G., Ovcharenko, I. E.. Q -functions and sc -resolvents of nondensely defined hermitian contractions . Sib. Math. J., 18 (1977), 728746. Google Scholar
Krein, M. G., Ovčarenko, I. E.. Inverse problems for Q-functions and resolvent matrices of positive hermitian operators . Sov. Math. Dokl., 19 (1978), 11311134. Google Scholar
Krein, M. G., Saakjan, S. N.. Some new results in the theory of resolvents of hermitian operators . Sov. Math. Dokl., 7 (1966), 10861089. Google Scholar
Krein, M. G., Smul’jan, Ju. L.. On linear-fractional transformations with operator coefficients . Amer. Math. Soc. Transl., 103 (1974), No. 2, 125152. Google Scholar
Kurasov, P.. Triplet extensions I: Semibounded operators in the scale of Hilbert spaces . J. Analyse Math., 107 (2009), 251286. CrossRefGoogle Scholar
Kurasov, P., Kuroda, S. T.. Krein’s resolvent formula and perturbation theory . J. Operator Th., 51 (2004), 321334. Google Scholar
Langer, H., Textorius, B.. On generalized resolvents and Q-functions of symmetric linear relations (subspaces) in Hilbert space . Pacific J. Math., 72 (1977), 135165.CrossRefGoogle Scholar
B. M. Levitan. Inverse Sturm–Liouville problems. VNU Science Press, Utrecht, 1987.
B. M. Levitan, I. S. Sargsjan. Introduction to spectral theory. Amer. Math. Soc., Providence, RI, 1975.
Malamud, M. M., Mogilevskii, V. I.. Krein type formula for canonical resolvents of dual pairs of linear relations . Methods Funct. Anal. Topology, 8 (2002), No. 4, 72100. Google Scholar
Marchenko, V. A.. Some questions in the theory of one-dimensional linear differential operators of the second order, I . Trudy Moskov. Mat. Obšč., 1 (1952), 327420. (Russian.) English transl. in Amer. Math. Soc. Transl., Ser. 2, 101 (1973), 1–104. Google Scholar
V. A. Marchenko. Sturm–Liouville operators and applications. Birkhäuser, Basel, 1986.
Marletta, M.. Eigenvalue problems on exterior domains and Dirichlet to Neumann maps . J. Comp. Appl. Math., 171 (2004), 367391. CrossRefGoogle Scholar
Nakamura, S.. A remark on the Dirichlet–Neumann decoupling and the integrated density of states . J. Funct. Anal., 179 (2001), 136152. CrossRefGoogle Scholar
Nenciu, G.. Applications of the Kreĭn resolvent formula to the theory of self-adjoint extensions of positive symmetric operators . J. Operator Th., 10 (1983), 209218. Google Scholar
Pankrashkin, K.. Resolvents of self-adjoint extensions with mixed boundary conditions . Rep. Math. Phys., 58 (2006), 207221. CrossRefGoogle Scholar
Pavlov, B.. The theory of extensions and explicitly-soluble models . Russ. Math. Surv., 42:6 (1987), 127168. CrossRefGoogle Scholar
B. Pavlov.S -matrix and Dirichlet-to-Neumann operators. Ch. 6.1.6 in Scattering: Scattering and inverse scattering in pure and applied science, Vol. 2. R. Pike, P. Sabatier (eds.). Academic Press, San Diego, 2002, pp. 1678–1688.
Pavlov, B.. Krein formula with compensated singularities for the ND-mapping and the generalized Kirchhoff condition at the Neumann Schrödinger junction . Russ. J. Math. Phys., 15 (2008), 364388. CrossRefGoogle Scholar
D. B. Pearson. Quantum scattering and spectral theory. Academic Press, London, 1988.
Posilicano, A.. A Krein-like formula for singular perturbations of self-adjoint operators and applications . J. Funct. Anal., 183 (2001), 109147. CrossRefGoogle Scholar
Posilicano, A.. Self-adjoint extensions by additive perturbations . Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 2 (2003), No. 1, 120. Google Scholar
Posilicano, A.. Boundary triples and Weyl functions for singular perturbations of self-adjoint operators . Meth. Funct. Anal. Topology, 10 (2004), No.2, 5763. Google Scholar
Posilicano, A.. Self-adjoint extensions of restrictions . Operators and Matrices, 2 (2008), 483506. CrossRefGoogle Scholar
A. Posilicano, L. Raimondi.Krein’s resolvent formula for self-adjoint extensions of symmetric second-order elliptic differential operators. J. Phys. A: Math. Theor., 42 (2009), 015204 (11pp).
Rybkin, A.. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators . Inverse Probl. Imaging, 3 (2009), 139149. CrossRefGoogle Scholar
Ryzhov, V.. A general boundary value problem and its Weyl function . Opuscula Math., 27 (2007), 305331. Google Scholar
Ryzhov, V.. Weyl–Titchmarsh function of an abstract boundary value problem, operator colligations, and linear systems with boundary control . Complex Anal. Operator Theory, 3 (2009), 289322. CrossRefGoogle Scholar
V. Ryzhov.Spectral boundary value problems and their linear operators. Preprint, 2009.
Saakjan, Sh. N.. On the theory of the resolvents of a symmetric operator with infinite deficiency indices . Dokl. Akad. Nauk Arm. SSR, 44 (1965), 193198. (Russian) .Google Scholar
Straus, A. V.. Extensions and generalized resolvents of a non-densely defined symmetric operator . Math. USSR Izv., 4 (1970), 179208. CrossRefGoogle Scholar
E. C. Titchmarsh. Eigenfunction expansions, Part I. 2nd ed., Clarendon Press, Oxford, 1962.
E. C. Titchmarsh. The theory of functions. 2nd ed., Oxford University Press, Oxford, 1985.
Tsekanovskii, E. R., Shmul’yan, Yu. L.. The theory of bi-extensions of operators on rigged Hilbert spaces. Unbounded operator colligations and characteristic functions . Russ. Math. Surv., 32:5 (1977), 73131.CrossRefGoogle Scholar