Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-14T19:10:41.690Z Has data issue: false hasContentIssue false

Plant Growth and Development - Basic Knowledge and Current Views

Published online by Cambridge University Press:  11 October 2010

V. Brukhin
Affiliation:
IBERS Department, University of Wales, Aberystwyth, United Kingdom
N. Morozova*
Affiliation:
1FRE CNRS 3239, Institute André Lwoff, Villejuif, France
*
*Corresponding author. E-mail: morozova@vjf.cnrs.fr
Get access

Abstract

One of the most intriguing questions in life science is how living organisms develop and maintain their predominant form and shape via the cascade of the processes of differentiation starting from the single cell. Mathematical modeling of these developmental processes could be a very important tool to properly describe the complex processes of evolution and geometry of morphogenesis in time and space. Here, we summarize the most important biological knowledge on plant development, exploring the different layers of investigation in developmental processes such as plant morphology, genetics, plant physiology, molecular biology and epigenetics. As knowledge on the fundamentals of plant embryogenesis, growth and development is constantly improving, we gather here the latest data on genetic, molecular and hormonal regulation of plant development together with the basic background knowledge. Special emphasis is placed on the regulation of cell cycle progression, on the role of the signal molecules phytohormones in plant development and on the details of plant meristems (loci containing plant stem cells) function. We also explore several proposed biological models regarding regulating plant development. The information presented here could be used as a basis for mathematical modeling and computer simulation of developmental processes in plants.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

S.H.Howell. Molecular Genetics of Plant Development. Cambridge University Press, Cambridge, 2000.
B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter. Molecular Biology of the Cell (5th ed.). Garland Science, New York, 2008.
TA. Steeves, and IM. Sussex. Patterns in Plant Development. Cambridge University Press, New York, 1989.
Aida, M., Ishida, T., Tasaka, M.. Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes . Development., 126 (1999), No. 8, 1563-1570.Google ScholarPubMed
Aida, M., Vernoux, T., Furutani, M., Traas, J., Tasaka, M.. Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo . Development., 129 (2002), 3965-3974.Google ScholarPubMed
Aida, M., Tasak, M.. Morphogenesis and patterning at the organ boundaries in the higher plant shoot apex . Plant Mol. Biol., 60 (2006), No. 6, 915-928.CrossRefGoogle ScholarPubMed
B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter. Molecular Biology of the Cell (5th ed.). Garland Science, New York, 2008.
Aukerman, M.J., and Sakai, H.. Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes . Plant Cell, 15 (2003), 2730-2741.CrossRefGoogle ScholarPubMed
Bartel, D.P.. MicroRNAs: genomics, biogenesis, mechanism, and function . Cell, 116 (2004), 281-297.CrossRefGoogle ScholarPubMed
Barton, M.K., Poethig, R.S.. Formation of the shoot apical meristem in Arabidopsis thaliana - an analysis of development in the wild type and in the shoot meristemless mutant . Development, 119 (1993), 823-831.Google Scholar
T.B. Batygina. Embryoidogeny. In: T.B. Batygina [ed.], Embryology of flowering plants. Terminology and concepts.vol.2, 502-509. Science Publishers, Inc., Enfield (NH), Plymouth, 2006.
T.B. Batygina, V.E. Vasileva. Plant reproduction. Sankt-Petersburg University Press, Sankt-Petersburg, 2002. (In Russian).
Benkova, E., Michniewicz, M., Sauer, M., Teichmann, T., Seifertova, D., Jürgens, G., Friml, J.. Local, efflux-dependent auxin gradients as a common module for plant organ formation . Cell, 115 (2003), 591-602.CrossRefGoogle ScholarPubMed
Bennett, M.J., Marchant, A., Green, H.G., May, S.T., Ward, S.P., Millner, P.A., Walker, A.R., Schulz, B., Feldmann, K.A.. Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism . Science, 273 (1996), 948-950.CrossRefGoogle ScholarPubMed
Berleth, T., Jurgens, G.. The role of monopteros gene in organizing the basal body regionof the Arabidopsis embryo . Development, 118 (1993), 575-587.Google Scholar
Bessonov, N., Morozova, N., Volpert, V.. Modeling of branching patterns in plants . Bull Math Biol., Apr; 70 (2008), No. 3, 868-89. CrossRefGoogle ScholarPubMed
Blilou, I., Xu, J., Wildwater, M., Willemsen, V., Paponov, I., Friml, J., Heidstra, R., Aida, M., Palme, K. K., Scheres, B.. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots . Nature, 433 (2005), 39-44.CrossRefGoogle ScholarPubMed
Bloom, W.. Cellular differentiation and tissue culture . Physiol. Rev., 17 (1937), 589-617.Google Scholar
Boke, N.H.. Leaf and areole development in Coryphantha . Am. J. Bot. 39 (1952), 134-145.CrossRefGoogle Scholar
Borisjuk, L., Rolletschek, H., Wobus, U., Weber, H.. Differentiation of legume cotyledons as related to metabolic gradients and assimilate transport into seeds . J. Exp. Biol., 54 (2003), 503-512.Google ScholarPubMed
Boucheron, E., Guivarc’h, A., Azmi, A., Dewitte, W., Van Onckelen, H., Chriqui, D.. Competency of Nicotiana tabacum L. stem tissues to dedifferentiate is associated with differential levels of cell cycle gene expression and endogenous cytokinins . Planta, 215 (2002), 267-278.Google ScholarPubMed
Bowman, J.L., Smyth, D.R., Meyerowitz, E.M.. Genetic interactions among floral homeotic genes of Arabidopsis . Development, 112 (1991), 1-20.Google ScholarPubMed
Brand, U., Fletcher, J.C., Hobe, M., Meyerowitz, E.M., Simon, R.. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity . Science, 289 (2000), 617-619.CrossRefGoogle ScholarPubMed
V.B. Brukhin. Paeonia embryo development in vivo and in vitro. PhD thesis, Komarov Botanical Institute, Russian Academy of Sciences, St.Petersburg, 1993.
Brukhin, V.B., Batygina, T.B.. Embryo culture and somatic embryogenesis in culture of Paeonia anomala L . Phytomorphology, 44 (1994), No. 3&4, 151-157.Google Scholar
Byrne, M.E., Kidner, C.A., Martienssen, R.A.. Plant stem cells: divergent pathways and common themes in shoots and roots . Current Opinion in Genetics and Development, 13 (2003), 551-557.CrossRefGoogle ScholarPubMed
Casimiro, I., Marchant, A., Bhalerao, R.P., Beeckman, T., Dhooge, S., Swarup, R., Graham, N., Inze, D., Sandberg, G., Casero, P.J., Bennett, M.. Auxin transport promotes Arabidopsis lateral root initiation . Plant Cell, 13 (2001), 843-852.CrossRefGoogle ScholarPubMed
Chaudhury, A.M., Ming, L., Miller, C., Craig, S., Dennis, E.S., Peacock, W.J.. Fertilisation-independent seed development in Arabidopsis thaliana . Proc Natl Acad Sci USA, 94 (1997), 4223-4228.CrossRefGoogle Scholar
Clark, S.E., Williams, R.W., Meyerowitz, E.M.. The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis . Cell, 89 (1997), 575-585.CrossRefGoogle ScholarPubMed
F.A. Clowes. Apical Meristems. Davis Company, Philadelphia, 1961.
Cock, JM., McCormick, S.. A Large Family of Genes That Share Homology with CLAVATA3 . Plant Physiology, 126 (2001), 939-942.CrossRefGoogle ScholarPubMed
Cosgrove, D.J.. Loosening of plant cell walls by expansins . Nature, 407 (2000), 321-326.CrossRefGoogle ScholarPubMed
Delisle, A.. The influence of auxin on secondary branching in two species of aster . Am. J. Bot., 24 (1937), 159-167.CrossRefGoogle Scholar
Dhonukshe, P., Tanaka, H., Goh, T., Ebine, K., M?h?nen, AP., Prasad, K., Blilou, I., Geldner, I.N., Xu, J., Uemura, T., Chory, J., Ueda, T., Nakano, A., Scheres, B., Friml, J.. Generation of cell polarity in plants links endocytosis, auxin distribution and cell fate decisions . Nature, 18 (2008), No. 456, 962-966.CrossRefGoogle Scholar
Elledge, S.J.. Cell Cycle Checkpoints: Preventing an Identity Crisis . Science, 274 (1996), 1664-1672.CrossRefGoogle ScholarPubMed
Endrizzi, K., Moussian, B., Haecker, A., Levin, JZ., Laux, T.. The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE . Plant J., 10 (1996), 967-979.CrossRefGoogle Scholar
Evan, G.I., Vousden, K.H.. Proliferation, cell cycle and apoptosis in cancer . Nature, 411 (2001), 342-348.CrossRefGoogle Scholar
Fleming, A.J., McQueen-Mason, , Mandel, T. and Kuhlemeier, C.. Induction of leaf primordia by the cell wall protein expansion . Science, 276, (1997), 1415-1418. CrossRefGoogle Scholar
Fleming, A.J.. Formation of primordia and phyllotaxy . Curr. Opin. Plant Biol., 8, (2005), 53-58. CrossRefGoogle Scholar
Fletcher, J.C., Brand, U., Running, M.P., Simon, R., Meyerowitz, E.M.. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems . Science, 283 (1999), 1911-1914.CrossRefGoogle ScholarPubMed
Fletcher, J.C.. Shoot and Floral Meristem Maintenance in Arabidopsis . Annu. Rev. Plant Biol., 53 (2002), 45-66.CrossRefGoogle ScholarPubMed
Friml, J., Benkova, E., Blilou, I., Wisniewska, J., Hamann, T., Ljung, K., Woody, S., Sandberg, G., Scheres, B., Jurgens, G., Palme, K.. AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis . Cell, 108 (2002), No. 5, 661-673.CrossRefGoogle ScholarPubMed
Friml, J., Vieten, A., Sauer, M., Weijers, D., Schwarz, H., Hamann, T., Offringa, R., and Jurgens, G.. Effluxdependent auxin gradients establish the apical-basal axis of Arabidopsis . Nature, 426 (2003), 147-153.CrossRefGoogle ScholarPubMed
Galweiler, L., Guan, C., Muller, A., Wisman, E., Mendgen, K., Yephremov, A., Palme, K.. Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue . Science, 282 (1998), 2226-2230.CrossRefGoogle ScholarPubMed
Geldner, N., Friml, J., Stierhof, Y.D., Jurgens, G., and Palme, K.. Auxin transport inhibitors block PIN1 cycling and vesicle trafficking . Nature, 413 (2001), 425-428.CrossRefGoogle ScholarPubMed
Geldner, N., Anders, N., Wolters, H., Keicher, J., Kornberger, W., Muller, P., Delbarre, A., Ueda, T., Nakano, A., Jürgens, G.. The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth . Cell, 112 (2003), 219-230.CrossRefGoogle ScholarPubMed
Geldner, N., Richter, S., Vieten, A., Marquardt, S., Torres-Ruiz, R.A., Mayer, U., Jürgens, G.. Partial loss-of-function alleles reveal a role for GNOM in auxin transport-related, post-embryonic development of Arabidopsis . Development, 131 (2004), No. 2, 389-400.CrossRefGoogle ScholarPubMed
Grafi, G.. How cells dedifferentiate: a lesson from plants . Dev Biol., 268 (2004), No. 1, 1-6.CrossRefGoogle ScholarPubMed
Greb, T., Clarenz, O., Schafer, E., Muller, D., Herrero, R., Schmitz, G., There, K.. Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation . Genes Dev., 17 (2003), No. 9, 1175-1187.CrossRefGoogle ScholarPubMed
Grossniklaus, U., Vielle-Calzada, J.P., Hoeppner, M.A., Gagliano, W.B.. Maternal control of embryogenesis by MEDEA, a Polycomb-group gene in Arabidopsis . Science 280 (1998), 446-450.CrossRefGoogle ScholarPubMed
Heisler, M.G., Ohno, C., Das, P., Sieber, P., Reddy, G.V., Long, J.A., Meyerowitz, E.M.. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem . Curr. Biol., 15 (2005), 1899-1911.CrossRefGoogle ScholarPubMed
Hamann, T., Benkova, E., Baurle, I., Kientz, M., Jurgens, G.. The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning . Genes Dev., 16 (2002), 1610-1615.CrossRefGoogle ScholarPubMed
Hamann, T., Mayer, U., Jurgens, G.. The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo . Development, 126 (1999), 1387-1395.Google ScholarPubMed
Hanahan, D., Weinberg, RA.. The hallmarks of cancer . Cell, 100 (2000), 57-70.CrossRefGoogle ScholarPubMed
Hardtke, C.S., Berleth, T.. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development . EMBO J., 17 (1998), 1405-1411.CrossRefGoogle ScholarPubMed
Helariutta, Y., Fukaki, H., Wysocka-Diller, J., Nakajima, K., Jung, J., Sena, G., Hauser, M.T., Benfey, P.N.. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling . Cell, 101 (2000), 555-567.CrossRefGoogle ScholarPubMed
Herwig, S., Strauss, M.. The retinoblastoma protein: a master regulator of cell cycle, differentiation and apoptosis . Eur J Biochem., 246 (1997), No. 3, 581-601.CrossRefGoogle ScholarPubMed
S.H. Howell. Molecular Genetics of Plant Development. Cambridge University Press, Cambridge, 2000.
Himanen, K., Boucheron, E., Vanneste, S., de Almeida Engler, J., Inze, D., Beeckman, T.. Auxinmediated cell cycle activation during early lateral root initiation . Plant Cell, 14 (2002), 2339-2351.CrossRefGoogle Scholar
Jackson, D., Veit, B., Hake, S.. Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot . Development, 120 (1994), 405-413.Google Scholar
R.V. Jean. Phyllotaxis. A Systematic Study in Plant Morphogenesis. Cambridge University Press, New York, 1994.
Jeong, S., Trotochaud, A.E., Clark, S.E.. The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase . Plant Cell, 11 (1999), 1925-1934.CrossRefGoogle ScholarPubMed
Jiang, K., Meng, Y.L., Feldman, L.J.. Quiescent center formation inmaize roots is associated with an auxin-regulated oxidizing environment . Development, 130 (2003), 1429-1438.CrossRefGoogle ScholarPubMed
Jimenez, V... Regulation of in vitro somatic embryogenesis with emphasis on to the role of endogenous hormones . Rev Brasil de Fisio Vegl., 13 (2001), 196-22.CrossRefGoogle Scholar
Jonsson, H., Heisler, M.G., Shapiro, B.E., Meyerowitz, E.M., Mjolsness, E.. An auxin-driven polarized transport model for phyllotaxis . Proc. Natl. Acad. Sci. USA, 103 (2006), No. 5, 1633-1638.CrossRefGoogle ScholarPubMed
Jurgens, G., Mayer, U., Ruiz, R.A.T., Berleth, T., and Misera, S.. Genetic analysis of pattern formation in the Arabidopsis embryo . Development Suppl., 91 (1991), No. 1, 27-3.Google Scholar
Jurgens, G., Geldner, N.. Protein secretion in plants: from the trans-Golgi network to the outer space . Traffic, 3 (2002), No. 9, 605-613.CrossRefGoogle ScholarPubMed
Ishikawa, H., and Evans, M.L.. Specialized zones of development in roots . Plant Physiol., 109 (1995), 725-727.CrossRefGoogle ScholarPubMed
Kerk, N.M., Jiang, K., Feldman, L.J.. Auxin metabolism in the root apical meristem . Plant Physiol., 122 (2000), 925-932.CrossRefGoogle ScholarPubMed
Kerstetter, R.A., Hake, S.. Shoot Meristem Formation in Vegetative Development . Plant Cell., 7 (1997), 1001-1010.CrossRefGoogle Scholar
Koltunow, A.M.. Apomixis: embryo sacs and embryos formed without meiosis or fertilization in Ovules . Plant Cell, 5 (1993), 1425-1437.CrossRefGoogle ScholarPubMed
Laufs, P., Peaucelle, A., Morin, H., and Traas, J.. MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems . Development, 131 (2004), 4311-4322.CrossRefGoogle Scholar
Laux, T., Mayer, KFX., Berger, J., Jurgens, G.. The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis . Development, 122 (1996), 87-96.Google ScholarPubMed
Law, J., Jacobsen, S.. Establishing, maintaining and modifying DNA methylation patterns in plants and animals . Nature Reviews Genetics, 11 (2010), 204-220.CrossRefGoogle ScholarPubMed
Lenhard, M., Laux, T.. Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1 . Development, 130 (2003), 3163-3173.CrossRefGoogle ScholarPubMed
Leon, P., Sheen, J.. Sugar and hormone connections . Trends Plant Sci., 8 (2003), No. 3, 110-116.CrossRefGoogle ScholarPubMed
Lincoln, C., Long, J., Yamaguchi, J., Serikawa, K., and Hake, S.. A knotted1-like Homeobox Gene in Arabidopsis Is Expressed in the Vegetative Meristem and Dramatically Alters Leaf Morphology When Overexpressed in Transgenic Plants . Plant Cell, 6 (1994), 1859-1876.CrossRefGoogle ScholarPubMed
Liu, Y. and Rao, M.S.. Transdifferentiation-fact or artifact . J. Cell. Biochem., 88 (2003), 29-40.CrossRefGoogle ScholarPubMed
Ljung, K., Hull, AK., Celenza, J., Yamada, M., Estelle, M., Normanly, J., Sandberg, G.. Sites and regulation of auxin biosynthesis in Arabidopsis roots . Plant Cell, 4 (2005), 1090-104.CrossRefGoogle Scholar
Long, J.A., Moan, E.I., Medford, J.I., Barton, M.K.. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis . Nature, 379 (1996), 66-69.CrossRefGoogle ScholarPubMed
Lohmann, J.U., Hong, R.L., Hobe, M., Busch, M.A., Parcy, F., Simon, R., Weigel, D.. A Molecular Link between Stem Cell Regulation and Floral Patterning in Arabidopsis . Cell 105 (2001), 793-803.CrossRefGoogle ScholarPubMed
Lopez-Bucio, J., Hernandez-Abreu, E., Sanchez-Calderon, L., Nieto-Jacobo, MF., Simpson, J., Herrera-Estrella., L. Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system . Plant Physiol., 129 (2002), 244-256.CrossRefGoogle ScholarPubMed
Lorenz, S., Tintelnot, S., Reski, R., Decker, E.L.. Cyclin D-knockout uncouples developmental progression from sugar availability . Plant Mol. Biol., 53 (2003), 227-236.CrossRefGoogle ScholarPubMed
Lu, P., Porat, R., Nadeau, J.A. and O’Neill, S.D.. Identification of a meristem L1 layer-specific gene in Arabidopsis that is expressed during embryonic pattern formation and defines a new class of homebox genes . Plant Cell, 8 (1996), 2155-2168.CrossRefGoogle Scholar
J. Luck and H. Luck. Classification of Plant Meristems based on Cellworks (3D L-systems). The Maintainance and Comlexity of Their Cellular Patterns. In: Pattern Formation in Biology, Vision and Dynamics. Editors: A. Carbone, M. Gromov, P. Prusinkiewicz. 2000, 199-216.
Lukowitz, W., Mayer, U., and Jürgens, G.. Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product . Cell, 84 (1996), 61-71.CrossRefGoogle ScholarPubMed
R.F. Lyndon. The Shoot Apical Meristem. Cambridge University Press, Cambridge. 1998.
Lynn, K., Fernandez, A., Aida, M., Sedbrook, J., Tasaka, M., Masson, P., and Barton, MK.. The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene . Development, 126 (1999), 469-481.Google ScholarPubMed
Magyar, Z., De Veylder, L., Atanassova, A., Bako, L., Inze, D., Bogre, L.. The role of the Arabidopsis E2FB transcription factor in regulating auxin-dependent cell division . Plant Cell, 9 (2005), 2527-2541.CrossRefGoogle Scholar
Mayer, U., Buettner, G., and Jürgens, G.. Apical-basal pattern formation in the Arabidopsis embryo studies on the role of the gnom gene . Development, 117 (1993), 149-162.Google Scholar
Mayer, K.F., Schoof, H., Haecker, A., Lenhard, M., Jürgens, G., Laux, T.. Role of WUSCHEL in Regulating Stem Cell Fate in the Arabidopsis Shoot Meristem . Cell, 95 (1998), 805-815.CrossRefGoogle ScholarPubMed
Meicenheimer, R.D.. Changes in Epilobium phyllotaxy induced by N-1-naphthylphthalamic acid and a-4-chlorophenoxyisobutyric acid . Am. J. Bot., 68 (1981), 1139-1154.CrossRefGoogle Scholar
Mizukami, Y., and Ma, H.. Determination of Arabidopsis Floral Meristem identity by Agamous . The Plant Cell, 9 (1997), 393-408.CrossRefGoogle ScholarPubMed
Mordhorst, A.P., Voerman, K.J., Hartog, M.V., Meijer, E.A., van Went, J., Koornneef, M., de Vries, S.C.. Somatic embryogenesis in Arabidopsis thaliana is facilitated by mutations in genes repressing meristematic cell divisions . Genetics, 149 (1998), 549-563.Google ScholarPubMed
Morel, J.B., Godon, C., Mourrain, P., Beclin, C., Boutet, S., Feuerbach, F., Proux, F., Vaucheret, H.. Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in post-transcriptional gene silencing and virus resistance . Plant Cell, 14 (2002), 629-639.CrossRefGoogle ScholarPubMed
Mravec, J., Kubes, M., Bielach, A., Gaykova, V., Petr?sek, J., Skupa, P., Chand, S., Benkov, E., Zaz?malov, E., Friml, J.. Interaction of PIN and PGP transport mechanisms in auxin distribution-dependent development . Development, 20 (2008), 3345-3354.CrossRefGoogle Scholar
Muller, A., Guan, C., Gälweiler, L., Tänzler, P., Huijser, P., Marchant, A., Parry, G., Bennett, M., Wisman, E., Palme, K.. AtPIN2 defines a locus of Arabidopsis for root gravitropism control . EMBO J., 17 (1998), No. 23, 6903-6911.CrossRefGoogle ScholarPubMed
Nakajima, K., Sena, G., Naw, T.., Benfey, PN.. Intercellular movement of the putative transcription factor SHR in root patterning . Nature, 413 (2001), 307-311.CrossRefGoogle ScholarPubMed
Nelson, D.M., Ye, X., Hall, C., Santos, H., Ma, T., Kao, GD., Yen, TJ., Harper, J.W., Adams, P.D.. Coupling of DNA synthesis and histone synthesis in S phase independent of cyclin/cdk2 activity . Mol. Cell. Biol., 22 (2002), No. 21, 7459-7472.CrossRefGoogle Scholar
Nigg, E.A.. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle . Bioessays, 17 (1995), No. 6, 471-480.CrossRefGoogle ScholarPubMed
Odelberg, S.J.. Inducing cellular dedifferentiation: a potential method for enhancing endogenous regeneration in mammals . Semin. Cell Dev. Biol., 13 (2002), 335-343.CrossRefGoogle ScholarPubMed
Okada, K., Ueda, J., Komaki, M.K., Bell, C.J., Shimura, Y.. Requirement of the auxin polar transport system in early stages of arabidopsis floral bud formation . Plant Cell, 3, (1991), 677-684. CrossRefGoogle ScholarPubMed
D.J. Osborne, MT. McManus. Hormones, Signals and Target Cells in Plant Development. Cambridge University Press, Cambridge, 2005.
Palatnik, J.F., Allen, E., Wu, X., Schommer, C., Schwab, R., Carrington, J.C., and Weigel, D.. Control of leaf morphogenesis by microRNAs . Nature, 425 (2003), 257-263.CrossRefGoogle ScholarPubMed
Pien, S., Wyrzykowska, J., McQueen-Mason, S., Smart, C., Fleming, A.. Local expression of expansion induces the entire process of leaf development and modifies leaf shape . Proc. Natl. Acad. Sci.USA, 98 (2001), 11812-11817.CrossRefGoogle Scholar
Poethig, R.S., Coe, E.H.J. and Johri, MM.. Cell linage patterns in maize Zea mays embryogenesis a clonal analysis . Dev. Biol., 117 (1986), 392-404.CrossRefGoogle Scholar
Rajeevan, M.S., Lang, A.. Flower-bud formation in explants of photoperiodic and day-neutral Nicotiana biotypes and its bearing on the regulation of flower formation . Proc. Natl. Acad. Sci. USA, 90 (1993), No. 10, 4636-4640.CrossRefGoogle ScholarPubMed
Reinhardt, D.. Regulation of phyllotaxis . Int. J. Dev. Biol., 49 (2005), 539-546.CrossRefGoogle ScholarPubMed
Reinhardt, D., Wittwer, F., Mandel, T., Kuhlemeier, C.. Localized upregulation of a new expansion gene predicts the site of leaf formation in the tomato meristem . Plant Cell, 10 (1998), 1427-1437.CrossRefGoogle ScholarPubMed
Reinhardt, D., Mandel, T., Kuhlemeier, C.. Auxin regulates the initiation and radial position of plant lateral organs . Plant Cell, 12 (2000), 507-518.CrossRefGoogle ScholarPubMed
Reinhardt, D., Pesce, E.R., Stieger, P., Mandel, T., Baltensperger, K., Bennett, M., Traas, J., Friml, J., Kuhlemeier, C.. Regulation of phyllotaxis by polar auxin transport . Nature, 462 (2003), 255-260.CrossRefGoogle Scholar
de Reuille, P.B., Bohn-Courseau, I., Godin, C., Traas, J.. A protocol to analyse cellular dynamics during plant development . Plant J., 6 (2005), 1045-1053.CrossRefGoogle Scholar
Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B., Bartel, DP.. Prediction of plant microRNA targets . Cell, 110 (2002), 513-520.CrossRefGoogle ScholarPubMed
Rojo, E., Sharma, V.K., Kovaleva, V., Raikhel, N.V., Fletcher, J.C.. CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway . Plant Cell, 14 (2002), 969-977.CrossRefGoogle ScholarPubMed
Rosche, E., Blackmore, D., Tegeder, M., Richardson, T., Schroeder, H., Higgins, T.J., Frommer, W.B., Offler, C.E., Patrick, J.W.. Seed-specific overexpression of a potato sucrose transporter increases sucrose uptake and growth rates of developing pea cotyledons . Plant J., 30 (2002), No. 2, 165-175.CrossRefGoogle ScholarPubMed
Sabatini, S., Beis, D., Wolkenfelt, H., Murfett, J., Guilfoyle, T., Malamy, J., Benfey, P., Leyser, O., Bechtold, N., Weisbeek, P., Scheres, B.. An auxindependent distal organizer of pattern and polarity in the Arabidopsis root . Cell, 99 (1999), 463-472.CrossRefGoogle Scholar
Sabatini, S., Heidstra, R., Wildwater, M., Scheres, B.. SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem . Genes Dev., 17 (2003), 354-358.CrossRefGoogle ScholarPubMed
Scheres, B., Wolkenfelt, H., Willemsen, V., Terlouw, M., Lawson, E., Dean, C., and Weisbeek, P.. Embryonic origin of the Arabidopsis primary root and root meristem initials . Development, 120 (1994), No. 9, 2475-2487.Google Scholar
Schindelman, G., Morikami, A., Jung, J., Baskin, TI., Carpita, NC., Derbyshire, P., McCann, MC., Benfey, PN.. COBRA encodes a putative GPI-anchored protein, which is polarly localized and necessary for oriented cell expansion in Arabidopsis . Genes Dev., 15 (2001), No. 9, 1115-1127.CrossRefGoogle ScholarPubMed
Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F., Jurgens, G., Laux, T.. The stem cell population of Arabidopsis shoot meristems in maintained by a regulatory loop between the CLAVATA and WUSCHEL genes . Cell, 100 (2000), 635-644.CrossRefGoogle ScholarPubMed
Sherr, C.J.. Cancer cell cycles . Science, 274 (1996), 1672-1677.CrossRefGoogle ScholarPubMed
Sitbon, F., Astot, C., Edlund, A., Crozier, A., Sandberg, G.. The relative importance of tryptophan-dependent and tryptophan-independent biosynthesis of indole-3-acetic acid in tobacco during vegetative growth . Planta, 211 (2000), 715-721.CrossRefGoogle ScholarPubMed
F. Skoog. Chemical regulation of growth in plants. In: E.J. Boell (Ed.), Dynamics of Growth Process. 1954, 148-182.
Skoog, F., Miller, C.O.. Chemical regulation of growth and organ formation in plant tissues cultured in vitro . Symp. Soc. Exp. Biol., 11 (1957), 118-140.Google ScholarPubMed
Smith, R.S., Guyomarch, S., Mandel, T., Reinhardt, D., Kuhlemeier, C., Prusinkiewicz, P.. A plausible model of phyllotaxis . Proc. Natl. Acad. Sci. USA, 103 (2006), No. 5, 1301-1306.CrossRefGoogle ScholarPubMed
Soni, R., Carmichael, J.P., Shah, Z.H., Murray, J.A.. A family of cyclin D homologs from plants differentially controlled by growth regulators and containing the conserved retinoblastoma protein interaction motif . Plant Cell, 7 (1995), No. 1, 85-103.CrossRefGoogle ScholarPubMed
Souer, E., van Houwelingen, A., Kloos, D., Mol, J., Koes, R.. The NO APICAL MERISTEM gene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries . Cell, 85 (1996), 159-170.CrossRefGoogle ScholarPubMed
T.A. Steeves and I.M. Sussex. Patterns in Plant Development, Cambridge University Press, New York, 1989.
Steinmann, T., Geldner, N., Grebe, M., Mangold, S., Jackson, C.L., Paris, S., G?lweiler, L., Palme, K., Jurgens, G.. Coordinated polar localization of auxin efflux carrier PIN1 by GNOM ARF GEF . Science, 286 (1999), 316-318.CrossRefGoogle ScholarPubMed
Stieger, P.A., Reinhardt, D., Kuhlemeier, C.. The auxin influx carrier is essential for correct leaf positioning . Plant J., 32 (2002), 509-517.CrossRefGoogle ScholarPubMed
Stirnberg, P., Chatfield, S.P., Leyser, HM.. AXR1 acts after lateral bud formation to inhibit lateral bud growth in Arabidopsis . Plant Physiol., 121 (1999), No. 3, 839-847.CrossRefGoogle ScholarPubMed
Stone, J.M., Trotochaud, A.E., Walker, J.C., Clark, S.E.. Control of meristem development by CLAVATA1 receptor kinase and kinase-associated protein phosphatase interactions . Plant Physiol., 117 (1998), 1217-1225.CrossRefGoogle ScholarPubMed
Swarup, R., Friml, J., Marchant, A., Ljung, K., Sandberg, G., Palme, K., Bennett, M.. Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex . Genes Dev., 15 (2001), 2648-2653.CrossRefGoogle ScholarPubMed
Tang, G.. siRNA and miRNA: an insight into RISCs . Trends in Biochemical Sciences, 30 (2005), 106-114.CrossRefGoogle ScholarPubMed
Taylor, R.L.. The foliar embryos of Malaxias paludosa . Canad. J. Bot., 45 (1967), 1553-1556.CrossRefGoogle Scholar
Teo, W.L., Kumar, P., Goh, C.J., and Swarup, S.. The expression of Brostm, a KNOTTED1-like gene, marks the cell type and timing of in vitro shoot induction in Brassica oleracea . Plant Mol. Biol., 46 (2001), 567-580.CrossRefGoogle ScholarPubMed
Thimann, K.V., Skoog, F.. Studies on the Growth Hormone of Plants: III. The Inhibiting Action of the Growth Substance on Bud Development . Proc. Natl. Acad. Sci. USA, 7 (1933), 714-716.CrossRefGoogle Scholar
Thingnaes, E., Torre, S., Ernstsen, A., Moe, R.. Day and night temperature responses in Arabidopsis:effects on gibberellin and auxin content, cell size, morphology and flowering time . Ann. Bot.(Lond.), 92 (2003), 601-612.CrossRefGoogle ScholarPubMed
Torres-Ruitz, R.A., Lohner, A., Jurgens, G.. The GURKE gene gene is required for normal organization of the apical region in the Arabidopsis embryo . Plant J., 10 (1996), 1005-1016.CrossRefGoogle Scholar
Tosh, D., Slack, J.M.. How cells change their phenotype . Nat. Rev. Mol. Cell Biol., 3 (2002), 187-194.CrossRefGoogle ScholarPubMed
Traas, J., Bohn-Courseau, I.. Cell proliferation patterns at the shoot apical meristem . Curr. Opin. Plant Biol., 8 (2005), 587-592.CrossRefGoogle ScholarPubMed
Treml, B.S., Winderl, S., Radykewicz, R., Herz, M., Schweizer, G., Hutzler, P., Glawischnig, E., Ruiz, R.A.. The gene ENHANCER OF PINOID controls cotyledon development in the Arabidopsis embryo . Development, 139 (2005), 4063-4074.CrossRefGoogle Scholar
Vernoux, T., Kronenberger, J., Grandjean, O., Laufs, P., Traas, J.. PIN-FORMED 1 regulates cell fate at the periphery of the shoot apical meristem . Development, 127 (2000), 5157-5165.Google ScholarPubMed
Vroemen, C.W., Mordhorst, A.P., Albrecht, C., Kwaaitaal, M.A., de Vries, SC.. The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis . Plant Cell, 7 (2003), 1563-1577.CrossRefGoogle Scholar
Wang, Y., Liu, C., Li, K, Sun, F., Hu, H., Li, X., Zhao, Y., Han, C., Zhang, W., Duan, Y., Liu, M.. Arabidopsis EIN2 modulates stress response through abscisic acid response pathway . Plant Mol. Biol., 64 (2007), No. 6, 633-644.CrossRefGoogle ScholarPubMed
Watt, F.M., Hogan, B.L.. Out of Eden: stem cells and their niches . Science, 287 (2000), 1427-1430.CrossRefGoogle ScholarPubMed
Weigel, D., Jürgens, G.. Stem cells that make stems . Nature, 415 (2002), 751-754. CrossRefGoogle ScholarPubMed
Went, F.W.. Plant growth under controlled conditions. III. Correlation between various physiological processes and growth in the tomato plant . Am. J. Bot., 31 (1944), No. 10, 597-618.CrossRefGoogle Scholar
Whetton, A.D., Graham, G.J.. Homing and mobilization in the stem cell niche . Trends Cell Biol., 9 (1999), 233-238.CrossRefGoogle ScholarPubMed
Wilmut, I., Beaujean, N., de Sousa, P.A., Dinnyes, A., King, T.J., Paterson, L.A., Wells, D.N., Young, L.E.. Somatic cell nuclear transfer . Nature, 419 (2002), 583-586.CrossRefGoogle ScholarPubMed
Williams, R.W., Wilson, J.M., Meyerowitz, E.M.. A possible role for kinase-associated protein phosphatase in the Arabidopsis CLAVATA1 signaling pathway . Proc. Natl. Acad. Sci. USA, 94 (1997), 10467-10472.CrossRefGoogle ScholarPubMed
Wyrzykowska, J., Pien, S., Shen, W.H., Fleming, AJ.. Manipulation of leaf shape by modulation of cell division . Development, 129 (2002), 957-964.Google ScholarPubMed
Wysocka-Diller, J.W., Helariutta, Y., Fukaki, H., Malamy, J.E., Benfey, P.N.. Molecular analysis of SCARECROW function reveals a radial patterning mechanism common to root and shoot . Development, 127 (2000), 595-603.Google ScholarPubMed
Yamaguchi, M., Kato, H., Yoshida, S., Yamamura, S., Uchimiya, H., Umeda, M.. Control of in vitro organogenesis by cyclin-dependent kinase activities in plants . Proc. Natl. Acad. Sci. USA, 100 (2003), No. 13, 8019-8023.CrossRefGoogle ScholarPubMed
Yarbrough, J.A.. Anatomical and developmental studies of the foliar embryos of Bryophyllum calicinum . Amer. J. of Bot., 19 (1932), 443-453.CrossRefGoogle Scholar
Zhu, Y.X., Davies, P.J.. The control of apical bud growth and senescence by auxin and gibberellin in genetic lines of peas . Plant Physiol., 113 (1997), 631-637.CrossRefGoogle ScholarPubMed