Published online by Cambridge University Press: 12 May 2010
We study the number of lattice points in ℝd ,d ≥ 2, lying inside an annulus as a function of the centre of theannulus. The average number of lattice points there equals the volume of the annulus, andwe study the L 1 and L 2 norms ofthe remainder. We say that a dimension is critical, if these norms do not have upper andlower bounds of the same order as the radius goes to infinity. In [Duke Math. J., 107 (2001), No. 2, 209–238], it was proved that in the case of the ball (instead of an annulus)the critical dimensions are d ≡ 1 mod 4. We show that the behaviour ofthe width of an annulus as a function of the radius determines which dimensions arecritical now. In particular, if the width is bounded away from zero and infinity, thecritical dimensions are d ≡ 3 mod 4; if the width goes to infinity, butslower than the radius, then all dimensions are critical, and if the width tends to zeroas a power of the radius, then there are no critical dimensions.