Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-14T06:10:12.966Z Has data issue: false hasContentIssue false

Delay Differential Equations and Autonomous Oscillations inHematopoietic Stem Cell Dynamics Modeling

Published online by Cambridge University Press:  12 December 2012

M. Adimy
Affiliation:
INRIA Team Dracula, INRIA Grenoble Rhône-Alpes Center, France Université de Lyon, Université Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 blvd du 11 novembre 1918, F-69622 Villeurbanne-Cedex, France
F. Crauste*
Affiliation:
INRIA Team Dracula, INRIA Grenoble Rhône-Alpes Center, France Université de Lyon, Université Lyon 1, CNRS UMR 5208, Institut Camille Jordan, 43 blvd du 11 novembre 1918, F-69622 Villeurbanne-Cedex, France
*
Corresponding author. E-mail: crauste@math.univ-lyon1.fr
Get access

Abstract

We illustrate the appearance of oscillating solutions in delay differential equationsmodeling hematopoietic stem cell dynamics. We focus on autonomous oscillations, arising asconsequences of a destabilization of the system, for instance through a Hopf bifurcation.Models of hematopoietic stem cell dynamics are considered for their abilities to describeperiodic hematological diseases, such as chronic myelogenous leukemia and cyclicalneutropenia. After a review of delay models exhibiting oscillations, we focus on threeexamples, describing different delays: a discrete delay, a continuous distributed delay,and a state-dependent delay. In each case, we show how the system can have oscillatingsolutions, and we characterize these solutions in terms of periods and amplitudes.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

Adamson, J.W.. Regulation of red blood cell Production. Am. J. Med., 101 (1996), S4S6. CrossRefGoogle Scholar
Adimy, M., Crauste, F.. Global stability of a partial differential equation with distributed delay due to cellular replication. Nonlinear Analysis, 54 (2003), 14691491. CrossRefGoogle Scholar
Adimy, M., Crauste, F.. Modelling and asymptotic stability of a growth factor-dependent stem cells dynamics model with distributed delay. Discrete and Continuous Dynamical Systems Series B, 8 (2007), No. 1, 1938. Google Scholar
Adimy, M., Crauste, F.. Mathematical model of hematopoiesis dynamics with growth factor-dependent apoptosis and proliferation regulation. Mathematical and Computer Modelling, 49 (2009), 21282137. CrossRefGoogle Scholar
Adimy, M., Crauste, F., El Abdllaoui, A.. Asymptotic Behavior of a Discrete Maturity Structured System of Hematopoietic Stem Cells Dynamics with Several Delays. Mathematical Modelling of Natural Phenomena, Vol 1 (2006), No. 2, 122. CrossRefGoogle Scholar
Adimy, M., Crauste, F., El Abdllaoui, A.. Discrete maturity-structured model of cell differentiation with applications to acute myelogenous leukemia. J. Biol. Syst., 16 (3) (2008), 395424. CrossRefGoogle Scholar
Adimy, M., Crauste, F., Hbid, M.L., Qesmi, R.. Stability and Hopf bifurcation for a cell population model with state-dependent delay. SIAM J. Appl. Math, 70 (5) (2010), 16111633. CrossRefGoogle Scholar
Adimy, M., Crauste, F., Marquet, C.. Asymptotic behavior and stability switch for a mature-immature model of cell differentiation. Nonlinear Analysis: Real World Applications, 11 (2010), 29132929. CrossRefGoogle Scholar
Adimy, M., Crauste, F., Ruan, S.. A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia. SIAM J. Appl. Math., 65 (2005), 13281352. CrossRefGoogle Scholar
Adimy, M., Crauste, F., Ruan, S.. Stability and Hopf bifurcation in a mathematical model of pluripotent stem cell dynamics. Nonlinear Analysis: Real World Applications, 6 (2005), No. 4, 651670. CrossRefGoogle Scholar
Adimy, M., Crauste, F., Ruan, S.. Periodic Oscillations in Leukopoiesis Models with Two Delays. J. Theo. Biol., 242 (2006), 288299. CrossRefGoogle ScholarPubMed
Adimy, M., Crauste, F., Ruan, S.. Modelling hematopoiesis mediated by growth factors with applications to periodic hematological diseases. Bulletin of Mathematical Biology, 68 (8) (2006), 23212351. CrossRefGoogle ScholarPubMed
Aiello, W., Freedman, H., Wu, J.. Analysis of a model representing stage-structured population growth with stage-dependent time delay. SIAM Journal of Applied Mathematics 52 (1992), 855869. CrossRefGoogle Scholar
an der Heiden, U.. Delays in physiological systems. J. Math. Biol. 8 (1979), 345364. CrossRefGoogle ScholarPubMed
Alarcon, T., Tindall, M.J.. Modelling Cell Growth and its Modulation of the G1/S Transition. Bull. Math. Biol., 69 (2007), 197214. CrossRefGoogle ScholarPubMed
Apostu, R., Mackey, M.C.. Understanding cyclical thrombocytopenia: a mathematical modeling approach. J. Theor. Biol., 251 (2008), 297316. CrossRefGoogle ScholarPubMed
Batzel, J.J., Kappel, F.. Time delay in physiological systems: Analyzing and modeling its impact. Math. Biosciences, 234 (2011), No. 2, 6174. CrossRefGoogle ScholarPubMed
Bélair, J., Mackey, M.C., Mahaffy, J.M.. Age-structured and two-delay models for erythropoiesis. Math. Biosci., 128 (1995), 317346. CrossRefGoogle ScholarPubMed
Beretta, E., Kuang, Y.. Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM J. Math. Anal., 33 (2002), 5, 11441165.No. CrossRefGoogle Scholar
Bernard, S., Belair, J., Mackey, M.C.. Sufficient conditions for stability of linear differential equations with distributed delay. Discrete Contin. Dyn. Syst. Ser. B., 1 (2001), 233256. Google Scholar
Bernard, S., Bélair, J., Mackey, M.C.. Oscillations in cyclical neutropenia: new evidence based on mathematical modeling. J. Theor. Biol., 223 (2003), 283298. CrossRefGoogle ScholarPubMed
Bodnar, M., Bartłomiejczyk, A.. Stability of delay induced oscillations in gene expression of Hes1 protein model. Nonlinear Analysis: Real World Applications, 13 (2012), 22272239. CrossRefGoogle Scholar
Burns, F.J., Tannock, I.F.. On the existence of a G0 phase in the cell cycle. Cell Tissue Kinet., 19 (1970), 321334. Google Scholar
Cheshier, S.H., Morrison, S. J., Liao, X., Weissman, I.L.. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc. Natl. Acad. Sci. USA, 96 (1999), 31203125. CrossRefGoogle Scholar
Ciupe, M.S., Bivort, B.L., Bortz, D.M., Nelson, P.W.. Estimating kinetic parameters from HIV primary infection data through the eyes of three different mathematical models. Math Biosci. 200(1) 2006, 127. CrossRefGoogle ScholarPubMed
Colijn, C., Foley, C., Mackey, M.C.. G-CSF treatment of canine cyclical neutropenia: A comprehensive mathematical model. Exper. Hematol. (2007), 35, 898907. CrossRefGoogle ScholarPubMed
Colijn, C., Mackey, M.C.. A mathematical model of hematopoiesis – I. Periodic chronic myelogenous leukemia. J. Theor. Biol., 237 (2005), 117132. CrossRefGoogle Scholar
Colijn, C., Mackey, M.C.. A mathematical model of hematopoiesis – II. Cyclical neutropenia. J. Theor. Biol., 237 (2005), 133146. CrossRefGoogle Scholar
Cooke, L.. Stability analysis for a vector disease model. Rocky Mountain J. Math., 9 (1979), 3142. CrossRefGoogle Scholar
Coutts, A.S., Adams, C.J., La Thangue, N.B.. p53 ubiquitination by Mdm2: a never ending tail ? DNA Repair (Amst). 8 (2009), 48390. CrossRefGoogle ScholarPubMed
Crauste, F.. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Math. Bio. Eng., 3 (2006), No. 2, 325346. CrossRefGoogle Scholar
Crauste, F.. Delay Model of Hematopoietic Stem Cell Dynamics: Asymptotic Stability and Stability Switch. Mathematical Modeling of Natural Phenomena, 4 (2009), No. 2, 2847. CrossRefGoogle Scholar
F. Crauste. Stability and Hopf bifurcation for a first-order linear delay differential equation with distributed delay, in Complex Time Delay Systems (Ed. F. Atay), Springer, 1st edition, 320 p., ISBN: 978-3-642-02328-6 (2010).
Crews, L.A., Jamieson, C.H.. Chronic myeloid leukemia stem cell biology. Curr Hematol Malig Rep., 7 (2012), No. 2, 125132. CrossRefGoogle ScholarPubMed
J.M. Cushing. Integrodifferential Equations and Delay Models in Population Dynamics. Springer-Verlag, Heidelberg, 1977.
Dale, D.C., Bolyard, A.A., Aprikyan, A.. Cyclic neutropenia. Semin. Hematol., 39 (2002), 8994. CrossRefGoogle Scholar
Dale, D.C., Hammond, W.P.. Cyclic neutropenia: A clinical review. Blood Rev., 2 (1998), 178185. CrossRefGoogle ScholarPubMed
J. Dieudonné. Foundations of Modern Analysis. Academic Press, New-York, 1960.
Foley, C., Bernard, S., Mackey, M.C.. Cost-effective G-CSF therapy strategies for cyclical neutropenia: Mathematical modelling based hypotheses. J. Theor. Biol. (2006), 238, 754763. CrossRefGoogle ScholarPubMed
Foley, C., Mackey, M.C.. Dynamic hematological disease: a review. J. Math. Biol., 58 (2009), 285322. CrossRefGoogle Scholar
Fowler, A.C., McGuinness, M.J.. A delay recruitment model of the cardiovascular control system. J. Math. Biol. 51 (2005), 508526. CrossRefGoogle ScholarPubMed
Fortin, P., Mackey, M.C.. Periodic chronic myelogenous leukaemia: spectral analysis of blood cell counts and a etiological implications. Br. J. Haematol., 104 (1999), 336345. CrossRefGoogle Scholar
Fowler, A., Mackey, M.C.. Relaxation oscillations in a class of delay differential equations. SIAM J. Appl. Math., 63 (2002), 299323. CrossRefGoogle Scholar
Fuss, H., Dubitzky, W., Downes, S., Kurth, M.J.. Mathematical models of cell cycle regulation. Brief Bioinform., 6 (2005), 163177. CrossRefGoogle ScholarPubMed
N. Geva-Zatorsky , N. Rosenfeld, S. Itzkovitz, R. Milo, A. Sigal, E. Dekel, T. Yarnitzky, Y. Liron, P. Polak, G. Lahav, U. Alon. Oscillations and variability in the p53 system. Mol Syst Biol (2006), 2.2006.0033.
K. Gopalsamy. Stability and Oscillations in Delay Differential Equations of Population. Dynamics, Kluwer Academic, Dordrecht, 1992.
Glass, L., Beuter, A., Larocque, D.. Time delays, oscillations, and chaos in physiological control systems. Mathematical Biosciences, 90 (1988), 111125. CrossRefGoogle Scholar
Guerry, D., Dale, D., Omine, D.C., Perry, S., Wolff, S.M.. Periodic hematopoiesis in human cyclic neutropenia. J Clin Invest. 52 (1973), 32203230. CrossRefGoogle ScholarPubMed
J. Hale, S.M. Verduyn Lunel. Introduction to functional differential equations. Applied Mathematical Sciences 99. Springer-Verlag, New York, 1993.
Haupt, Y., Maya, R., Kazaz, A., Oren, M.. Mdm2 promotes the rapid degradation of p53. Nature 387 (1997), 296299. CrossRefGoogle ScholarPubMed
Haurie, C., Dale, D.C., Mackey, M.C.. Cyclical neutropenia and other periodic hematological disorders: A review of mechanisms and mathematical models. Blood, 92 (1998), 26292640. Google ScholarPubMed
Haurie, C., Dale, D.C., Mackey, M.C.. Occurrence of periodic oscillations in the differential blood counts of congenital, idiopathic, and cyclical neutropenic patient before and during treatment with G-CSF. Exp. Hematol., 27 (1999), 401409. CrossRefGoogle ScholarPubMed
Haurie, C., Dale, D.C., Rudnicki, R., Mackey, M.C.. Modeling complex neutrophil dynamics in the grey collie. J Theor Biol. 204 (2000), 505519. CrossRefGoogle ScholarPubMed
Haurie, C., Person, R., Dale, D.C., Mackey, M.C.. Hematopoietic dynamics in grey collies. Exp. Hematol., 27 (1999), 11391148. CrossRefGoogle Scholar
Hayes, N.D.. Roots of the transcendental equation associated with a certain difference-differential equation. J. London Math. Soc., 25 (1950), 226232. CrossRefGoogle Scholar
Hearn, T., Haurie, C., Mackey, M.C.. Cyclical neutropenia and the peripheral control of white blood cell production. J. Theor. Biol. 192 (1998), 167181. CrossRefGoogle ScholarPubMed
Hirata, H., Yoshiura, S., Ohtsuka, T., Bessho, Y., Harada, T., Yoshikawa, K., Kageyama, R.. Oscillatory Expression of the bHLH Factor Hes1 Regulated by a Negative Feedback Loop. Science 298 (2002), 840843. CrossRefGoogle ScholarPubMed
Y. Kuang. Delay Differential Equations with Applications in Population Dynamics. Academic Press, INC., San Diego, CA (1993).
L.G. Lajtha. On DNA labeling in the study of the dynamics of bone marrow cell populations, in: Stohlman, Jr., F. (Ed), The Kinetics of Cellular Proliferation, Grune and Stratton, New York (1959), 173–182.
Lei, J., Mackey, M.C.. Multistability in an age-structured model of hematopoiesis: Cyclical neutropenia. J. Theor. Biol., 270 (2011), 143153. CrossRefGoogle Scholar
Li, J., Kuang, Y., Mason, C.. Modeling the glucose-insulin regulatory system and ultradian insulin secretory oscillations with two time delays. J. Theoret. Biol., 242 (2006), 722735. CrossRefGoogle Scholar
Longobardo, G.S., Cherniack, N.S., Fishman, A.P.. Cheyne–Stokes breathing produced by a model of the human respiratory system. J. Appl. Physiol. 21 (1966), 18391846. Google ScholarPubMed
N. MacDonald. Time Lags in Biological Models. Springer-Verlag, Heidelberg, 1978.
Mackey, M.C.. Unified hypothesis of the origin of aplastic anaemia and periodic hematopoiesis. Blood, 51 (1978), 941956. Google Scholar
Mackey, M.C.. Periodic auto- immune hemolytic anemia: an induced dynamical disease. Bull. Math. Biol., 41 (1979), 829834. CrossRefGoogle ScholarPubMed
Mackey, M.C.. Cell kinetic status of haematopoietic stem cells. Cell Prolif., 34 (2001), 7183. CrossRefGoogle Scholar
Mahaffy, J.M., Bélair, J., Mackey, M.C.. Hematopoietic model with moving boundary condition and state dependant delay. J. Theor. Biol., 190 (1998), 135146. CrossRefGoogle Scholar
Mallet-Paret, J., Nussbaum, R.D., Paraskevopoulos, P.. Periodic solutions for functional differential equations with multiple state-dependent time lags. Topol. Methods Nonlinear Anal., 3 (1994), 101162. CrossRefGoogle Scholar
Milton, J.G., Mackey, M.C.. Periodic haematological diseases: mystical entities of dynamical disorders ? J.R. Coll. Phys., 23 (1989), 236241. Google Scholar
Monk, N.A.M.. Oscillatory expression of Hes1, p53, and NF-k B driven by transcriptional time delays. Curr. Biol. 13 (2003), 14091413. CrossRefGoogle Scholar
Morley, A.. Periodic diseases, physiological rhythms and feedback control-a hypothesis. Aust. Ann. Med. 3 (1970), 244249. Google Scholar
Morley, A., Baikie, A.G., Galton, D.A.G.. Cyclic leukocytosis as evidence for retention of normal homeostatic control in chronic granulocytic leukaemia. Lancet, 2 (1967), 13201322. CrossRefGoogle Scholar
A. Morley, E.A. King-Smith, F. Stohlman. The oscillatory nature of hemopoiesis. In: Stohlman, F. (Ed.), Hemopoietic Cellular Proliferation. Grune & Stratton, New York, (1969), 3–14.
Nelson, P.W., Murray, J.D., Perelson, A.S.. A model of HIV-1 pathogenesis that includes an intracellular delay. Math. Biosci., 163 (2000), 201215. CrossRefGoogle ScholarPubMed
Pørksen, N., Hollingdal, M., Juhl, C., Butler, P., Veldhuis, J. D., Schmitz, O.. Pulsatile insulin secretion: Detection, regulation, and role in diabetes. Diabetes, 51 (2002), S245S254. CrossRefGoogle ScholarPubMed
Pujo-Menjouet, L., Bernard, S., Mackey, M.C.. Long period oscillations in a G0 model of hematopoietic stem cells. SIAM J. Appl. Dyn. Systems, 4 (2005), No. 2, 312332. CrossRefGoogle Scholar
Pujo-Menjouet, L., Mackey, M.C.. Contribution to the study of periodic chronic myelogenous leukemia. Comptes Rendus Biologies, 327 (2004), 235244. CrossRefGoogle ScholarPubMed
Ratajczak, M.Z., Ratajczak, J., Marlicz, W., et al. Recombinant human thrombopoietin (TPO) stimulates erythropoiesis by inhibiting erythroid progenitor cell apoptosis. Br J. Haematol., 98 (1997), 817. CrossRefGoogle ScholarPubMed
Santillan, M., Bélair, J., Mahaffy, J.M., Mackey, M.C.. Regulation of platelet production: The normal response to perturbation and cyclical platelet disease. J. Theor. Biol., 206 (2000), 585603. CrossRefGoogle ScholarPubMed
Smith, B.R.. Regulation of hematopoiesis. Yale J Biol Med., 63 (1990), No. 5, 371380. Google Scholar
Smith, H.L.. Reduction of structured population models to threshold-type delay equations and functional differential equations: a case study. Math. Biosc., 113 (1993), 123. CrossRefGoogle Scholar
Sturis, J., Polonsky, K. S., Mosekilde, E., Van Cauter, E.. Computer model for mechanisms underlying ultradian oscillations of insulin and glucose. Am. J. Physiol., 260 (1991), E801E809. Google ScholarPubMed
Sturrock, M., Terry, A.J., Xirodimas, D.P., Thompson, A.M., Chaplain, M.A.J.. Spatio-temporal modelling of the Hes1 and p53-Mdm2 intracellular signalling pathways. J. Theor. Biol., 273 (2011), 1531. CrossRefGoogle ScholarPubMed
Tanimukai, S., Kimura, T., Sakabe, H. et al. Recombinant human c-Mpl ligand (thrombopoietin) not only acts on megakaryocyte progenitors, but also on erythroid and multipotential progenitors in vitro. Experimental Hematology, 25 (1997), 10251033. Google Scholar
E. Terry, J. Marvel, C. Arpin, O. Gandrillon, F. Crauste. Mathematical Model of the primary CD8 T Cell Immune Response: Stability Analysis of a Nonlinear Age-Structured System. J. Math. Biol. (to appear).
Tolic, I.M., Mosekilde, E., Sturis, J.. Modeling the insulin-glucose feedback system: The significance of pulsatile insulin secretion. J. Theoret. Biol., 207 (2000), 361375. CrossRefGoogle Scholar
J.J. Tyson, B. Novak. Regulation of the Eukaryotic Cell Cycle: Molecular Antagonism, Hysteresis, and Irreversible Transitions. J. theor. Biol., 210 (2001), pp. 249–263.
Vainchenker, W.. Hématopoïèse et facteurs de croissance. Encycl. Med. Chir., Hematologie, 13000 (1991), M85. Google Scholar
Walther, H.O.. The solution manifold and C1-smoothness of solution operators for differential equations with state dependent delay. J. Differential Eqs., 195 (2003), 4665. CrossRefGoogle Scholar
G.F. Webb. Theory of Nonlinear Age-Dependent Population Dynamics. Monographs and textbook in Pure Appl. Math., 89, Marcel Dekker, New York (1985).
Weissman, I.L.. Stem cells: units of development, units of regeneration, and units in evolution. Cell, 100 (2002), 157168. CrossRefGoogle Scholar