Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T13:10:41.037Z Has data issue: false hasContentIssue false

Generalized Elastic Model: Fractional Langevin Description, Fluctuation Relation and Linear Response

Published online by Cambridge University Press:  24 April 2013

A. Taloni
Affiliation:
CNR-IENI, Via R. Cozzi 53, 20125 Milano, Italy
A. Chechkin
Affiliation:
Max-Planck-Institute for Physics of Complex Systems, Noethnitzer Str. 38 D-91187 Dresden, Germany Akhiezer Institute for Theoretical Physics, NSC KIPT, Kharkov 61108, Ukraine
J. Klafter*
Affiliation:
School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
*
Corresponding author. E-mail: alessandro.taloni@gmail.com
Get access

Abstract

The Generalized Elastic Model is a linear stochastic model which accounts for the behaviour of many physical systems in nature, ranging from polymeric chains to single-file systems. If an external perturbation is exerted only on a single point x (tagged probe), it propagates throughout the entire system. Within the fractional Langevin equation framework, we study the effect of such a perturbation, in cases of a constant force applied. We report most of the results arising from our previous analysis and, in the present work, we show that the Fox H-functions formalism provides a compact, elegant and useful tool for the study of the scaling properties of any observable. In particular we show how the generalized Kubo fluctuation relations can be expressed in terms of H-functions.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Taloni, A., Chechkin, A., Klafter, J.. Generalized elastic model yields a fractional Langevin equation description. Phys. Rev. Lett. 104 (2010), No 16, 160602-1-4. CrossRefGoogle Scholar
Saichev, A., Zazlawsky, M.. Fractional kinetic equations: solutions and applications. Chaos, 7 (1997), No 4, 753-765. CrossRefGoogle ScholarPubMed
S. G. Samko, A. A. Kilbas, O. I. Marichev. Fractional Integrals and Derivatives, Theory and Applications. Gordon and Breach, Amsterdam, 1993.
M. Doi, S. F. Edwards. The Theory of Polymer Dynamics. Clarendon, Oxford, 1986.
Granek, R.. From semi-flexible polymers to membranes: anomalous diffusion and reptation. J. Phys. II France, 7 (1997), 1761-1788. CrossRefGoogle Scholar
Farge, E., Maggs, A. C.. Dynamic scattering from semiflexible polymers. Macromol., 26 (1993), No 19, 5041-5044.
Edwards, S. F., Wilkinson, D. R.. The surface statistics of a granular aggregate. Proc. R. Soc. London A, 381 (1982), No 1780, 17-31. CrossRefGoogle Scholar
Zimm, B. H.. Dynamics of polymer molecules in dilute solution: viscoelasticity flow birefringence and dielectric loss. J. Chem. Phys., 24 (1956), No 2, 269-278. CrossRefGoogle Scholar
Rouse, P. E.. A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys., 21 (1953), No 7, 1272-1280. CrossRefGoogle Scholar
Freyssingeas, E., Roux, D., Nallet, F.. Quasi-Elastic Light Scattering Study of Highly Swollen Lamellar and “Sponge" Phases. J. Phys. II France, 7 (1997), 913-929.
Granek, R., Klafter, J.. Anomalous motion of membranes under a localized external potential. Europhys. Lett., 56 (2001), No 1, 15-21. CrossRefGoogle Scholar
Zilman, A. G., Granek, R.. Membrane dynamics and structure factor. Chem. Phys., 284 (2002), 195-204. CrossRefGoogle Scholar
Zilman, A. G., Granek, R.. Dynamics of fractal sol-gel polymeric clusters. Phys. Rev. E, 58 (1998), No 3, R2725-R2728. CrossRefGoogle Scholar
Searson, P. C., Li, R., Sieradzki, K.. Surface Diffusion in the Solid-on-Solid Model. Phys. Rev. Lett. 74 (1995), No 8, 1395-1398.
Krug, J., Kallabis, H., Majumdar, S. N., Cornell, S. J., Bray, A. J., Sire, C.. Persistence exponents for fluctuating interfaces. Phys. Rev. E, 56 (1997), No 3, 2702-2712. CrossRefGoogle Scholar
Toroczkai, Z., Williams, E. D.. Nanoscale fluctations at solid surfaces. Phys. Today, 52 (1998), No.12 , 24-29. Google Scholar
Majaniemi, S., Ala-Nissila, T., Krug, J.. Kinetic roughening of surfaces: Derivation, solution, and application of linear growth equations. Phys. Rev. B, 53 (1995), No 12, 8071-8082. CrossRefGoogle Scholar
Gao, H., Rice, J. R.. A first order perturbation analysis of crack trapping by arrays of obstacles. J. Appl. Mech., 65 (1989), No 56, 828-836. CrossRefGoogle Scholar
Joanny, J. F., de Gennes, P. G.. A model for contact angle hysteresis. J. Chem. Phys., 81 (1984), 552-549. CrossRefGoogle Scholar
Mainardi, F., Pironi, P.. The Fractional Langevin Equation: Brownian Motion Revisited. Extr. Math. 10 (1996), No 1, 140-154;
Lutz, E.. Fractional Langevin equation. Phys. Rev. E, 64 (2001), No 5, 051106-1-4.
Mandelbrot, B. B., Van Ness, J. W., Fractional Brownian Motions, Fractional Noises and Applications. SIAM Rev., 10 (1968), 422-437. CrossRefGoogle Scholar
Kou, S. C., Xie, X. S.. Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule. Phys. Rev. Lett., 93 (2004), No 18, 180603-1-4.
Burov, S., Barkai, E.. Critical exponent of the fractional Langevin equation. Phys. Rev. Lett., 100 (2008), No 7, 070601-1-4. CrossRefGoogle ScholarPubMed
Sau Fa, K.. Generalized Langevin equation with fractional derivative and long-time correlation function. Phys. Rev. E, 73 (2006), No 6, 061104-1-4. Google Scholar
Sau Fa, K.. Fractional Langevin equation and Riemann-Liouville fractional derivative. Eur. Phys. J. E, 24 (2007), No 2, 139-143. CrossRefGoogle ScholarPubMed
Goychuk, I.. Viscoelastic Subdiffusion: Generalized Langevin Equation Approach. Adv. Chem. Phys., 150 (2012), 187-253. Google Scholar
Taloni, A., Lomholt, M. A.. Langevin formulation for single-file diffusion. Phys. Rev. E, 78 (2008), No 5, 051116-1-8. CrossRefGoogle Scholar
Lizana, L., Ambjornsson, T., Taloni, A., Barkai, E., Lomholt, M. A.. et al.. Foundation of fractional Langevin equation: Harmonization of a many-body problem. Phys. Rev. E, 81 (2010), No 5, 051118-1-8. CrossRefGoogle Scholar
D. Panja. Generalized Langevin equation formulation for anomalous polymer dynamics. J. Stat. Mech., (2010), L02001-1-8. D. Panja. Anomalous polymer dynamics is non-Markovian: memory effects and the generalized Langevin equation formulation. J. Stat. Mech., (2010), P06011-1-34.
Taloni, A., Chechkin, A., Klafter, J.. Correlations in a generalized elastic model: Fractional Langevin equation approach. Phys. Rev. E, 82 (2010), No 6, 061104-1-15. CrossRefGoogle Scholar
Fox, C.. The G and H Functions as symmetrical Fourier kernels. Trans. Amer. Math. Soc., 98 (1961), 395-429. Google Scholar
A. M. Mathai, R. K. Saxena. The H-Function with Application in Statistics and Other Discplines. Wiley Eastern Limited, New Delhi-Bangalore-Bombay, 1978.
R. Hilfer (Ed.). Applications of Fractional Calculus in Physics. World Scientific, Singapore, 2000.
Gloeckle, W. G., Nonnenmacher, T. F.. Fractional Integral Operators and Fox Functions in the Theory of Viscoelasticity. Macromolecules, 24 (1991), 6426-6434.
Metzler, R., Gloeckle, W. G., Nonnenmacher, T. F., Fractional model equation for anomalous diffusion. Physica A, 211 (1994), 13-24.
Mainardi, F., Pagnini, G., Saxena, R. K.. Fox H functions in fractional diffusion. Journ. Comput. Applied Math., 178 (2005), Nos 1-2, 321-331. CrossRefGoogle Scholar
Denisov, S. I., Yuste, S. B., Bystrik, Yu. S., Kantz, H., Lindenberg, K.. Asymptotic solutions of decoupled continuous-time random walks with superheavy-tailed waiting time and heavy-tailed jump length distributions. Phys. Rev. E, 84 (2011), 061143-1-7. CrossRefGoogle ScholarPubMed
Saxena, R. K., Mathai, A. M., Haubold, H. J.. Fractional Reaction-Diffusion Equations. Astrophys Space Sci, 305 (2006), 289-296. CrossRefGoogle Scholar
Vlad, M. O., Metzler, R., Ross, J.. Generalized Huber kinetics for nonlinear rate processes in disordered systems: Nonlinear analogs of stretched exponential. Phys. Rev. E, 57 (1998), No. 6, 6497-6505. CrossRefGoogle Scholar
Laskin, N.. Fractional quantum mechanics and Levy path integrals. Phys. Lett. A, 268 (2000), 298-305.
A. A. Kilbas, M. Saigo, H-Transforms. Theory and Applications. Chapman and Hall, London, 2004.
A. M. Mathai, R. K. Saxena, H. J. Haubold, The H - Function. Theory and Applications. Springer, New York, 2010.
A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev. Integral and Series. Vol.3: More special Functions. Gordon and Breach Science, Amsterdam, 1990.
Taloni, A., Chechkin, A., Klafter, J.. Unusual response to a localized perturbation in a generalized elastic model. Phys. Rev. E, 84 (2011), No 2, 021101-1-7. CrossRefGoogle Scholar
Helfer, E., Harlepp, S., Bourdieu, L., Robert, J., MacKintosh, F. C., Chatenay, D.. Microrheology of biopolymer-membrane complexes. Phys. Rev. Lett., 85 (2000), No 2, 457-460.
Leef, Chau-Hwang et al. Three-Dimensional Characterization of Active Membrane Waves on Living Cells. Phys. Rev. Lett. 103 (2009), No 23, 238101-1-4. Google Scholar
I. Podlubny. Fractional Differential Equations. Academic Press, New York, 1999.
Caputo, M.. Linear model of dissipation whose Q is almost frequency independent. Geophys. J. R. Astr. Soc., 13 (1967), 529-539. CrossRefGoogle Scholar
D. C. Champeney. Fourier Transforms and Physical Applications. Academic Press, London, 1973.
Taloni, A., Chechkin, A., Klafter, J.. Generalized elastic model: Thermal vs. non-thermal initial conditions. Universal scaling, roughening, ageing and ergodicity. Europhys. Lett., 97 (2012), No 3, 30001-p1-p6. CrossRefGoogle Scholar
A. L. Barabasi, H. E. Stanley. Fractal Concepts in Surface Growth. Cambridge University Press, Cambridge, 1994.
P. Meakin. Fractal and scaling growth far from equilibrium. Cambridge University Press, Cambridge, 1998.
Family, F., Vicsek, T.. Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model. J. Phys. A: Math. Gen., 18 (1985), No 2, L75-L81. CrossRefGoogle Scholar
M. Abramowitz, I. Stegun. Handbook of Mathematical Functions. Dover, New York, 1964.
A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev. Integrals and Series. Vol.I: Elementary Functions. New York: Gordon and Breach, 1986.
I. M. Gelfand, G. E. Shilov, Generalized Functions. Academic Press, 1964.
A. W. J. Erdelyi. Asymptotic Expansions. Dover, New York, 1956.
R. Kubo, M. Toda, N. Hatsushime. Statistical Physics II: Nonequilibrium Statistical Mechanics. Springer, Berlin, 1991.
Marconi, U. M. B., Puglisi, A., Rondoni, L., Vulpiani, A.. Fluctuation-dissipation: response theory in statistical physics. Phys. Rep., 461 (2008), No 4-6, 111-195.
Barkai, E., Silbey, R.. Theory of Single File Diffusion in a Force Field. Phys. Rev. Lett., 102 (2009), No 5, 050602-1-4. CrossRefGoogle Scholar
I. S. Gradshtein, I. M. Rizhikl. Tables of Integrals. Series and Products. Academic Press, New York, 2007.
R. Santachiara, A Rosso, W Krauth. Universal width distributions in non-Markovian Gaussian processes. J. Stat. Mech., (2007), P02009–.
G. H. Hardy. Divergent Series. Clarendon Press, Oxford, 1949.
F. W. J. Olver. Asymptotics and Special Functions. Academic Press, New York, 1974.