Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T02:30:14.203Z Has data issue: false hasContentIssue false

Investigation of the Migration/Proliferation Dichotomy and itsImpact on Avascular Glioma Invasion

Published online by Cambridge University Press:  25 January 2012

K. Böttger
Affiliation:
Center for Information Services and High-Performance Computing, Technische Universität Dresden, 01062 Dresden, Germany
H. Hatzikirou
Affiliation:
Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA
A. Chauviere*
Affiliation:
Department of Pathology, University of New Mexico, Albuquerque, NM 87131, USA
A. Deutsch
Affiliation:
Center for Information Services and High-Performance Computing, Technische Universität Dresden, 01062 Dresden, Germany
*
Corresponding author. E-mail: achauviere@salud.unm.edu
Get access

Abstract

Gliomas are highly invasive brain tumors that exhibit high and spatially heterogeneouscell proliferation and motility rates. The interplay of proliferation and migrationdynamics plays an important role in the invasion of these malignant tumors. We analyze theregulation of proliferation and migration processes with a lattice-gas cellular automaton(LGCA). We study and characterize the influence of the migration/proliferation dichotomy(also known as the “GO-or-Grow" mechanism) on avascular glioma invasion, in terms ofinvasion speed and width of the infiltration zone. We show that the invasive behavior ofthe (macroscopic) tumor colony is a highly complex phenomenon that cannot be extrapolatedby the sole knowledge of the (microscopic) individual cell phenotype.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Athale, C., Mansury, Y., Deisboeck, T.. Simulating the impact of a molecular ‘decision-process’ on cellular phenotype and multicellular patterns in brain tumors. J. Theor. Biol., 233 (2005), 469481. CrossRefGoogle Scholar
Boon, J.P., Dab, D., Kapral, R., Lawniczak, A.. Lattice gas automata for reactive systems. Phys. Rpts., 273 (1996), 55147. CrossRefGoogle Scholar
B.M. Caradoc-Davies. Vortex Dynamics in Bose-Einstein Condensates. Ph.D. dissertation, University of Otago, Dunedin, New Zealand (2000).
B. Chopard, M. Droz. Cellular Automata Modeling of Physical Systems. Cambridge University Press (1998).
A. Deutsch, S. Dormann. Cellular automaton modeling of biological pattern formation. Birkhäuser (2005).
Fedotov, S., Iomin, A.. Migration and Proliferation Dichotomy in Tumor-Cell Invasion. Phys. Rev. Let., 98 (2007), 1181014. CrossRefGoogle Scholar
C.W. Gardiner. Handbook of stochastic methods. Springer, Berlin (1990).
Giese, A., Loo, M.A., Tran, N., Haskett, D., Coons, S.W., Berens, M.E.. Dichotomy of astrocytoma migration and proliferation. Int. J. Cancer, 67 (1996), 275282. 3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Giese, A., Bjerkvig, R., Berens, M.E., Westphal, M.. Cost of Migration : Invasion of Malignant Gliomas and Implications for Treatment. J. Clin. Onc., 21 (8) (2003), 16241636. CrossRefGoogle Scholar
Godlewski, J., Nowicki, M., Bronisz, A., Nuovo, G., Palatini, J., De Lay, M., Van Brocklyn, J., Ostrowski, M., Chiocca, E. A., Lawler, S. E.. MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol. Cell, 37 (2010), 62032. CrossRefGoogle ScholarPubMed
Harpold, H.L.P., Alvord, E.C. Jr, Swanson, K.R.. The evolution of mathematical modeling of glioma proliferation and invasion. J. Neuropathol. Exp. Neurol., 66 (1) (2007), 19. CrossRefGoogle ScholarPubMed
H. Hatzikirou, D. Basanta, M. Simon, C. Schaller, A. Deutsch. ‘Go or Grow’ : the key to the emergence of invasion in tumor progression ? Mathematical Medicine and Biology (Published online July 2010), doi :10.1093/imammb/dqq01.
Hatzikirou, H., Brusch, L., Deutsch, A.. From cellular automaton rules to an effective macroscopic mean-field description. Acta Phys. Pol. B Proc., 3 (2010), 399416. Google Scholar
Hatzikirou, H., Brusch, L., Schaller, C., Simon, M., Deutsch, A.. Prediction of traveling front behavior in a lattice-gas cellular automaton model for tumor invasion. Comput. Math. Appl., 59 (2010), 23262339. CrossRefGoogle Scholar
Lewis, M.A., Schmitz, G.. Biological invasion of an organism with separate mobile and stationary states : Modeling and analysis. Forma, 11 (1996), 125. Google Scholar
Mansury, Y., Diggory, M., Deisboeck, T.. Evolutionary game theory in an agent-based brain tumor model : Exploring the ’Genotype-Phenotype’ link. J. Theor. Biol., 238 (2006), 146156. CrossRefGoogle Scholar
K. Pham, A. Chauviere, H. Hatzikirou, X. Li, H. M. Byrne, V. Cristini, J. Lowengrub. Density-dependent quiescence in glioma invasion : instability in a simple reaction-diffusion model for the migration/proliferation dichotomy. J. Biol. Dyn. (Published online June 2011), doi :10.1080/17513758.2011.590610.
Baker, R.E., Simpson, M.J.. Simulating invasion with cellular automata : connecting cell-scale and population-scale properties. Phys. Rev. E, 76 (2) (2007), 021918. Google Scholar
Stein, A.M., Nowicki, M. O., Demuth, T., Berens, M.E., Lawler, S.E., Chiocca, E.A., Sander, L.M.. Estimating the cell density and invasive radius of 3d glioblastoma tumor spheroids grown in vitro. Appl. Optics, 46 (22) (2007), 51105118. CrossRefGoogle Scholar
Stein, A.M., Demuth, T., Mobley, D., Berens, M., Sander, L.K.. A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment. Biophys. J., 92 (1) (2007), 356365. CrossRefGoogle Scholar
Stockholm, D., Benchaouir, R., Picot, J., Rameau, P., Neildez, T.M.A., Landini, G., Laplace-Builhe, C., Paldi, A.. The origin of phenotypic heterogeneity in a clonal cell population in vitro. PLoS ONE, 4 (2007), 113. Google Scholar
Tektonidis, M., Hatzikirou, H., Chauviere, A., Simmon, M., Schaller, K., Deutsch, A.. Identification of intrinsic in vitro cellular mechanisms for glioma invasion. J. Theor. Biol., 287 (2011), 131147. CrossRefGoogle ScholarPubMed
Wang, C.H., Rockhill, J.K., Mrugala, M., Peacock, D.L., Lai, A., Jusenius, K., Wardlaw, J.M., Cloughesy, T., Spence, A.M., Rockne, R., et al. Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model. Cancer Res., 69 (23) (2009), 91339140. CrossRefGoogle Scholar