Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-13T03:57:54.831Z Has data issue: false hasContentIssue false

KdV Equation in the Quarter–Plane: Evolution of the WeylFunctions and Unbounded Solutions

Published online by Cambridge University Press:  29 February 2012

A. Sakhnovich*
Affiliation:
Department of Mathematics, University of Vienna, Nordbergstrasse 15, A-1090 Vienna, Austria
*
Corresponding author. E-mail: Oleksandr.Sakhnovych@univie.ac.at
Get access

Abstract

The matrix KdV equation with a negative dispersion term is considered in the right upperquarter–plane. The evolution law is derived for the Weyl function of a correspondingauxiliary linear system. Using the low energy asymptotics of the Weyl functions, theunboundedness of solutions is obtained for some classes of the initial–boundaryconditions.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bona, J.L., Fokas, A.S.. Initial-boundary-value problems for linear and integrable nonlinear dispersive equations. Nonlinearity, 21 (2008), T195-T203. CrossRefGoogle Scholar
Bona, J.L., Pritchard, W.G., Scott, L.R.. An evaluation of a model equation for water waves. Philos. Trans. R. Soc. Lond., A 302 (1981), 458510.
Bona, J., Winther, R.. The Korteweg–de Vries equation, posed in a quarter–plane. SIAM J. Math. Anal., 14 (1983), 10561106. CrossRefGoogle Scholar
Carroll, R., Bu, Q.. Solution of the forced nonlinear Schrödinger (NLS) equation using PDE techniques. Appl. Anal., 41 (1991), 3351. CrossRefGoogle Scholar
Chu, C.K., Xiang, L.W., Baransky, Y.. Solitary waves induced by boundary motion. Commun. Pure Appl. Math., 36 (1983), 495504. CrossRefGoogle Scholar
Clark, S., Gesztesy, F.. Weyl-Titchmarsh M-function asymptotics for matrix-valued Schrödinger operators. Proc. Lond. Math. Soc., III. Ser., 82 (2001), 701724. CrossRefGoogle Scholar
Clark, S., Gesztesy, F., Zinchenko, M.. Weyl-Titchmarsh theory and Borg-Marchenko-type uniqueness results for CMV operators with matrix-valued Verblunsky coefficients. Oper. Matrices, 1 (2007), 535592. CrossRefGoogle Scholar
Fokas, A.S.. Integrable nonlinear evolution equations on the half-line. Comm. Math. Phys., 230 (2002), 139. CrossRefGoogle Scholar
A.S. Fokas. A unified approach to boundary value problems. CBMS-NSF Regional Conference Ser. in Appl. Math. vol. 78. SIAM, Philadelphia, 2008.
Fokas, A.S., Lenells, J.. Explicit soliton asymptotics for the Korteweg–de Vries equation on the half-line. Nonlinearity, 23 (2010), 937976. CrossRefGoogle Scholar
G. Freiling, V. Yurko. Inverse Sturm–Liouville Problems and Their Applications. Nova Science Publishers, Huntington, N.Y., 2001.
Gesztesy, F., Simon, B.. On local Borg-Marchenko uniqueness results. Commun. Math. Phys., 211 (2000), 273287. CrossRefGoogle Scholar
Gesztesy, F., Simon, B.. A new approach to inverse spectral theory. II. General real potentials and the connection to the spectral measure. Ann. of Math. (2), 152 (2000), 593643. CrossRefGoogle Scholar
Gohberg, I., Kaashoek, M.A., Sakhnovich, A.L.. Sturm-Liouville systems with rational Weyl functions : explicit formulas and applications. Integr. Equ. Oper. Theory, 30 (1998), 338377. CrossRefGoogle Scholar
Kac, M., van Moerbeke, P.. A complete solution of the periodic Toda problem. Proc. Natl. Acad. Sci. USA, 72 (1975), 28792880. CrossRefGoogle ScholarPubMed
Kaup, D.J., Steudel, H.. Recent results on second harmonic generation. Contemp. Math., 326 (2003), 3348. CrossRefGoogle Scholar
A. Kostenko, A. Sakhnovich, G. Teschl. Weyl-Titchmarsh theory for Schrödinger operators with strongly singular potentials. Int. Math. Res. Not. 2011, Art. ID rnr065, 49pp.
Sabatier, P.C.. Elbow scattering and inverse scattering applications to LKdV and KdV. J. Math. Phys., 41 (2000), 414436. CrossRefGoogle Scholar
Sabatier, P.C.. Lax equations scattering and KdV. J. Math. Phys., 44 (2003), 32163225. CrossRefGoogle Scholar
Sabatier, P.C.. Generalized inverse scattering transform applied to linear partial differential equations. Inverse Probl., 22 (2006), 209228. CrossRefGoogle Scholar
Sakhnovich, A.L.. Dirac type and canonical systems : spectral and Weyl-Titchmarsh fuctions, direct and inverse problems. Inverse Probl., 18 (2002), 331348. CrossRefGoogle Scholar
Sakhnovich, A.L.. Second harmonic generation : Goursat problem on the semi-strip, Weyl functions and explicit solutions. Inverse Probl., 21 (2005), 703716. CrossRefGoogle Scholar
Sakhnovich, A.L.. On the compatibility condition for linear systems and a factorization formula for wave functions. J. Differ. Equations, 252 (2012), 36583667. CrossRefGoogle Scholar
Sakhnovich, A.L.. Sine-Gordon theory in a semi-strip. Nonlinear Analysis, 75 (2012), 964974. CrossRefGoogle Scholar
L.A. Sakhnovich. Nonlinear equations and inverse problems on the semi-axis (Russian). Preprint 87.30. Mathematical Institute, Kiev, 1987.
Sakhnovich, L.A.. Evolution of spectral data, and nonlinear equations. Ukrain. Math. J., 40 (1988), 459461. CrossRefGoogle Scholar
L.A. Sakhnovich. Spectral Theory of Canonical Differential Systems. Method of Operator Identities. Operator Theory Adv. Appl. Ser. vol. 107. Birkhäuser, Basel, 1999.
Ton, B.A.. Initial boundary value problems for the Korteweg-de Vries equation. J. Differ. Equations 25 (1977), 288309. CrossRefGoogle Scholar
Treharne, P.A., Fokas, A.S.. The generalized Dirichlet to Neumann map for the KdV equation on the half-line. J. Nonlinear Sci., 18 (2008), 191217. CrossRefGoogle Scholar