Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-13T04:14:30.466Z Has data issue: false hasContentIssue false

Mathematics of Darwin’s Diagram

Published online by Cambridge University Press:  28 May 2014

N. Bessonov
Affiliation:
Institute of Problems of Mechanical Engineering, Russian Academy of Sciences 199178 Saint Petersburg, Russia
N. Reinberg
Affiliation:
Institute of Problems of Mechanical Engineering, Russian Academy of Sciences 199178 Saint Petersburg, Russia
V. Volpert*
Affiliation:
Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France
*
Corresponding author. E-mail: volpert@math.univ-lyon1.fr
Get access

Abstract

Darwin illustrated his theory about emergence and evolution of biological species with adiagram. It shows how species exist, evolve, appear and disappear. The goal of this workis to give a mathematical interpretation of this diagram and to show how it can bereproduced in mathematical models. It appears that conventional models in populationdynamics are not sufficient, and we introduce a number of new models which take intoaccount local, nonlocal and global consumption of resources, and models with space andtime dependent coefficients.

Type
Research Article
Copyright
© EDP Sciences, 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Apreutesei, N., Bessonov, N., Volpert, V., Vougalter, V.. Spatial structures and generalized travelling waves for an integro-differential equation. DCDS B, 13 (2010), no. 3, 537-557. CrossRefGoogle Scholar
Apreutesei, N., Ducrot, A., Volpert, V.. Travelling waves for integro-differential equations in population dynamics. Discrete Contin. Dyn. Syst., Ser. B, 11 (2009), no. 3, 541561. CrossRefGoogle Scholar
Apreutesei, N., Ducrot, A., Volpert, V.. Competition of species with intra-specific competition. Math. Model. Nat. Phenom., 3 (2008), 127. CrossRefGoogle Scholar
Atamas, S.. Self-organization in computer simulated selective systems. Biosystems, 39 (1996), 143-151. CrossRefGoogle ScholarPubMed
Berestycki, H., Nadin, G., Perthame, B., Ryzhik, L.. The non-local Fisher-KPP equation: travelling waves and steady states. Nonlinearity, 22 (2009), no. 12, 28132844. CrossRefGoogle Scholar
Britton, N.F.. Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model. SIAM J. Appl. Math., 6 (1990), 16631688. CrossRefGoogle Scholar
J.A. Coyne, H.A. Orr. Speciation. Sinauer Associates, Sunderland, 2004.
C. Darwin. The origin of species by means of natural selection. Barnes & Noble Books, New York, 2004. Publication prepared on the basis of the first edition appeared in 1859.
Demin, I., Volpert, V.. Existence of waves for a nonlocal reaction-diffusion equation. Math. Model. Nat. Phenom., 5 (2010), no. 5, 80101. CrossRefGoogle Scholar
Desvillettes, L., Jabin, P.E., Mischler, S., Raoul, G.. On selection dynamics for continuous structured populations. Commun. Math. Sci., 6 (2008), no. 3, 729747. CrossRefGoogle Scholar
Dieckmann, U., Doebeli, M.. On the origin of species by sympatric speciation. Nature, 400 (1999), 354357. CrossRefGoogle ScholarPubMed
Doebeli, M., Dieckmann, U.. Evolutionary branching and sympatric speciation caused by different types of ecological interactions. The American Naturalist, 156 (2000), S77S101. CrossRefGoogle Scholar
Ducrot, A., Marion, M., Volpert, V.. Spectrum of some integro-differential operators and stability of travelling waves. Nonlinear Analysis Series A: Theory, Methods and Applications, 74 (2011), no. 13, 4455-4473. CrossRefGoogle Scholar
Fisher, R.A.. The wave of advance of advantageous genes. Ann. Eugenics, 7 (1937), 355369. CrossRefGoogle Scholar
S. Gavrilets. Fitness Landscape and the Origin of Species. Princeton University Press, Princeton, 2004.
S. Genieys, N. Bessonov, V. Volpert. Mathematical model of evolutionary branching. Mathematical and computer modelling, 2008, doi: 10/1016/j.mcm.2008.07.023
Genieys, S., Volpert, V., Auger, P.. Pattern and waves for a model in population dynamics with nonlocal consumption of resources. Math. Model. Nat. Phenom., 1 (2006), no. 1, 6582. CrossRefGoogle Scholar
Genieys, S., Volpert, V., Auger, P.. Adaptive dynamics: modelling Darwin’s divergence principle. Comptes Rendus Biologies, 329 (2006) no. 11, 876879. CrossRefGoogle Scholar
Gourley, S.A.. Travelling front solutions of a nonlocal Fisher equation. J. Math. Biol., 41 (2000), 272284. CrossRefGoogle ScholarPubMed
Gourley, S.A., Chaplain, M.A.J., Davidson, F.A.. Spatio-temporal pattern formation in a nonlocal reaction-diffusion equation. Dynamical systems, 16 (2001), no. 2, 173192. CrossRefGoogle Scholar
Iron, D., Ward, M.J.. A metastable spike solution for a nonlocal reaction-diffusion model. SIAM J. Appl. Math., 60 (2000), no. 3, 778802. CrossRefGoogle Scholar
A.N. Kolmogorov, I.G. Petrovsky, N.S. Piskunov. A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem. Bull. Moscow Univ., Math. Mech., 1:6 (1937), 1-26. In: Selected Works of A.N. Kolmogorov, Vol. 1, V.M. Tikhomirov, Editor, Kluwer, London, 1991.
A. Lotka. Elements of Physical Biology. Williams & Wilkins, Baltimore, 1925.
T.R. Malthus. Essay on the Principle of Population. Printed for J. Johnson, in St. Paul’s Church-Yard, 1798.
J. Murray. Mathematical Biology. Second edition, 1993; Third edition, Volumes I and II, 2003. Springer, Heidelberg.
Nadin, G., Rossi, L., Ryzhik, L., Perthame, B.. Wave-like solutions for nonlocal reaction-diffusion equations: a toy model. Math. Model. Nat.Phenom., 8 (2013), no. 3, 3341. CrossRefGoogle Scholar
Nec, Y., Ward, M. J.. The stability and slow dynamics of two-spike patterns for a class of reaction-diffusion system. Math. Model. Nat. Phenom., 8 (2013), no.5. CrossRefGoogle Scholar
Perthame, B., Genieys, S.. Concentration in the nonlocal Fisher equation: the Hamilton-Jacobi limit. Math. Model. Nat. Phenom., 4 (2007), 135151. CrossRefGoogle Scholar
A. Scheel. Radially symmetric patterns of reaction-diffusion systems. Memoirs of the AMS, 165 (2003), no. 3., 86 p.
Tzou, J.C., Bayliss, A., Matkowsky, B.J., Volpert, V.A.. Stationary and slowly moving localised pulses in a singularly perturbed Brusselator model. Euro. Jnl. of Applied Mathematics, 22 (2011), 423453. CrossRefGoogle Scholar
Verhulst, P.-F.. Notice sur la loi que la population suit dans son accroissement. Correspondance mathématique et physique. 10 (1838), 113121. Google Scholar
A.I. Volpert, V. Volpert, V.A. Volpert. Traveling Wave Solutions of Parabolic Systems. Translation of Mathematical Monographs, Vol. 140, AMS, Providence, 1994.
V. Volpert. Elliptic Partial Differential Equations. Volume 1. Fredholm Theory of Elliptic Problems in Unbounded Domains. Birkhäuser, 2011.
V. Volpert. Elliptic Partial Differential Equations. Volume 2. Reaction-diffusion Equations. Birkhäuser, 2014.
Volpert, V., Petrovskii, S.. Reaction-diffusion waves in biology. Physics of Life Reviews, 6 (2009), 267310. CrossRefGoogle Scholar
V. Volpert, V. Vougalter. Emergence and propagation of patterns in nonlocal reaction-diffusion equations arising in the theory of speciation. In: Dispersal, individual movement and spatial ecology. M. Lewis, Ph. Maini, S. Petrovskii. Editors. Springer Applied Interdisciplinary Mathematics Series. Lecture Notes in Mathematics, Volume 2071, 2013, 331-353.
V. Volterra. Leçons sur la théorie mathématique de la lutte pour la vie. Paris, 1931.
Wei, J., Winter, M.. Existence, classification and stability analysis of multiple-peaked solutions for the Gierer-Meinhardt system in R 1. Methods Appl. Anal., 14 (2007), no. 2, 119163. Google Scholar
Zhang, F.. Coexistence of a pulse and multiple spikes and transition layers in the standing waves of a reaction-diffusion system. J. Differential Equations, 205 (2004), 77155. CrossRefGoogle Scholar