No CrossRef data available.
Article contents
Mesh Refinement For Stabilized Convection DiffusionEquations
Published online by Cambridge University Press: 26 August 2010
Abstract
We derive a residual a posteriori error estimates for the subscales stabilization ofconvection diffusion equation. The estimator yields upper bound on the error which isglobal and lower bound that is local
- Type
- Research Article
- Information
- Copyright
- © EDP Sciences, 2010
References
Achchab, B., El Fatini, M., Ern, A., Souissi, A..
Adaptive mesh for
algebraic orthogonal subscale stabilization of convective dispersive
transport
. C. R. Math. Acad. Sci. Paris.,
346 (2008),
1187–1190.CrossRefGoogle Scholar
Achchab, B., El Fatini, M., Ern, A., Souissi, A..
A posteriori error
estimator for subgrid viscosity stabilisation applied to convection-diffusion
problem
. AML, 22
(2009), No. 9,
1418–1424.Google Scholar
Brezzi, F., Russo, A..
Chosing bubbles for
advection-diffusion problems
. Math. Model. and Meth.
Appl. Sci., 4 (1994),
571–587.CrossRefGoogle Scholar
Brooks, A. N., Hughes, T. J.
R..
Streamline Upwind/
Petrov Galerkin formulation for convection dominated flows with particular emphasis on
the incompressible Navier-Stokes equations
. Model.
Comput. Methods Appl. Mech. Engrg., 32 (1982),
1–3.Google Scholar
Codina, R..
On stabilized finite
element methods for linear systems of convection-diffusion-reaction
equations
. Comp. Meth. Appl. Mech. Engrg.,
188 (2000),
61–82.CrossRefGoogle Scholar
Guermond, J. L..
Subgrid Stabilization
of Galerkin approximations of linear monotone operators
.
Journal of Numerical Analysis (IMA), 21
(2001), 165–197.CrossRefGoogle Scholar
Hughes, T. J. R..
Multiscale phenomena:
Green’s functions, the Dirichlet-to-Neumann formulation, subgrid-scale models, bubbles
and the origin of stabilized methods
. Comp. Meth.
Appl. Mech. Engrg., 127 (1995),
387–401.CrossRefGoogle Scholar
Pironneau, O..
On the
transport-diffusion algorithm and its applications to the Navier-Stokes
equations
. Numer. Math., 38
(1982), 309–332.CrossRefGoogle Scholar
Verfürth, R..
A posteriori error
estimators for convection-diffusion equations
. Numer.
Math., 80 (1998),
641–663.Google Scholar