No CrossRef data available.
Article contents
Meshless Polyharmonic Div-Curl Reconstruction
Published online by Cambridge University Press: 26 August 2010
Abstract
In this paper, we will discuss the meshless polyharmonic reconstruction of vector fieldsfrom scattered data, possibly, contaminated by noise. We give an explicit solution of theproblem. After some theoretical framework, we discuss some numerical aspect arising in theproblems related to the reconstruction of vector fields
- Type
- Research Article
- Information
- Copyright
- © EDP Sciences, 2010
References
Benbourhim, M. N., Bouhamidi, A..
Pseudo-polyharmonic
vectorial approximation for div-curl and elastic semi-norms
.
Numer. Math., 109 (2008), No.
3, 333–364.CrossRefGoogle Scholar
J. Duchon. Splines minimizing
rotation-invariant seminorms in Sobolev spaces. In constructive theory of
functions of several variables, eds. W. Schempp and K. Zeller, Lecture notes in
mathematics, vol. 571, Springer-Verlag, Berlin, (1977), 85–100.
Iwaniec, T., Sbordone, C..
Quasiharmonic
fields
. Ann. I. H. Poincaré-AN 18,
5 (2001),
519–572.CrossRefGoogle Scholar
Peetre, J..
Espaces d’interpolation
et théorème de Soboleff
. Ann. Inst. Fourier,
Grenoble, 16 (1966),
279–317.CrossRefGoogle Scholar
L. Schwartz. Théorie des distibutions. Hermann,
Paris, 1966.
E. Stein. Singular integrals and differentiability
properties of functions. Princeton University Press, 1970.