Published online by Cambridge University Press: 10 March 2010
The interplay between intrinsic and network dynamics has been the focus of manyinvestigations. Here we use a combination of theoretical and numerical approaches to studythe effects of delayed global feedback on the information transmission properties ofneural networks. Specifically, we compare networks of neurons that display intrinsicinterspike interval correlations (nonrenewal) to networks that do not (renewal). We findthat excitatory and inhibitory delays can tune information transmission by single neuronsbut not by the entire network. Most surprisingly, addition of a delay can change thedependence of the information on the coupling strength for renewal neurons and not fornonrenewal neurons. Our results show that intrinsic ISI correlations can have nontrivialinteractions with network-induced phenomena.