Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T05:04:11.789Z Has data issue: false hasContentIssue false

On Oscillatory Instability in Convective Burning ofGas-Permeable Explosives

Published online by Cambridge University Press:  09 June 2010

I. Brailovsky
Affiliation:
School of Mathematical Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
M. Frankel
Affiliation:
Department of Mathematical Sciences, Indiana University – Purdue University, Indianapolis, IN, 46202, USA
L. Kagan
Affiliation:
School of Mathematical Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
G. Sivashinsky*
Affiliation:
School of Mathematical Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
*
* Corresponding author. E-mail:grishas@post.tau.ac.il
Get access

Abstract

The experimentally known phenomenon of oscillatory instability in convective burning ofporous explosives is discussed. A simple phenomenological model accounting for theejection of unburned particles from the consolidated charge is formulated and analyzed. Itis shown that the post-front hydraulic resistance induced by the ejected particlesprovides a mechanism for the oscillatory burning.

Type
Research Article
Copyright
© EDP Sciences, 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreev, K. K., Chuiko, S. V.. Transition of the burning of explosives into an explosion . Russ. J. Phys. Chem., 37 (1963), 695699.Google Scholar
K. K. Andreev, A. F. Belyaev. Theory of Explosive Substances. Transi., US Department of Commerce Report AD-643597 (1966).
Bayliss, A., Matkowsky, B.. Two Routes to Chaos in Condensed Phase Combustion . SIAM J. Appl. Math., 50 (1990), 43759.CrossRefGoogle Scholar
A. F. Belyaev, V. K. Bobolev, A. I. Korotkov, A. A. Sulimov, S. V. Chuiko. Transition from Deflagration to Detonation in Condensed Phases. Israel Program for Scientific Translations, Jerusalem (1975).
Benjamin, T. B.. Effects of a flexible boundary on hydrodynamic stability . J. Fluid Mechanics, 9 (1960), 513532.CrossRefGoogle Scholar
Brailovsky, I., Frankel, M., Sivashinsky, G.. Galloping and spinning modes of subsonic detonation . Combust. Theory Modelling, 4 (2000), 4760.CrossRefGoogle Scholar
Clavin, P.. Theory of gaseous detonations . Chaos, 14 (2004), 82538.CrossRefGoogle ScholarPubMed
Dimitriou, P., Puszynski, J., Hlavacek, V.. On the Dynamics of Equations Describing Gasless Combustion in Condensed Systems . Combsut. Sci. Technol., 68 (1989), 10111.CrossRefGoogle Scholar
Dubovitskii, V. F., Korostelev, V. G., Korotkov, A. I., Frolov, Yu. V., Firsov, A. N., Shkadinsky, K. G., Khomik, S. V.. Burning of porous condensed systems and powders . Combust.Expl. Shock Waves, 10 (1974), 730736.CrossRefGoogle Scholar
Ermolaev, B. S., Sulimov, A. A., Foteenkov, V. A., E.Khrapovskii, V., Korotkov, A. I., Borisov, A. A.. Nature of and laws governing quasi-steady-state pulsed convective combustion . Combust. Expl. Shock Waves, 16 (1980), 266274.CrossRefGoogle Scholar
Ergun, S.. Fluid flow through packed columnes . Chem. Engr. Prog. 48 (1952), 8994.Google Scholar
Fifer, R. A., Cole, F. F.. Transition from laminar burning for porous crystalline explosives . Proc. Seventh Symp. (Int.) on Detonation, 7 (1981), 164174.Google Scholar
Frankel, M., Roytburd, V., Sivashinsky, G.. Complex dynamics generated by a sharp interface model of self-propagating high-temperature synthesis . Combust. Theory Modelling, 2 (1998), 47996.CrossRefGoogle Scholar
Kagan, L., Sivashinsky, G.. A high-porosity limit for the transition from conductive to convective burning in gas-permeable explosives . Combust.Flame, 157 (2010), 357362.CrossRefGoogle Scholar
Margolis, S. B.. The transition to nonsteady deflagration in gasless combustion . Prog. Energy Combust. Sci., 17 (1991), 13562.CrossRefGoogle Scholar
Telengator, A. M., Margolis, S. B., Williams, F. A.. Stability of Quasi-Steady Deflagrations in Confined Porous Energetic Materials . Combust. Sci.Technol., 160 (2000), 259316.CrossRefGoogle Scholar
Telengator, A. M., Williams, F. A., Margolis, S. B.. Finite-rate interphase heat-transfer effects on multiphase burning in confined porous propellants . Combust. Sci. Technol., 178 (2006), 16851720.CrossRefGoogle Scholar