Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-13T04:09:50.543Z Has data issue: false hasContentIssue false

Solitons and Gibbs Measures for Nonlinear Schrödinger Equations

Published online by Cambridge University Press:  29 February 2012

K. Kirkpatrick*
Affiliation:
University of Illinois at Urbana-Champaign, Department of Mathematics, Urbana, IL, 61801, USA
*
Corresponding author. E-mail: kkirkpat@illinois.edu
Get access

Abstract

We review some recent results concerning Gibbs measures for nonlinear Schrödingerequations (NLS), with implications for the theory of the NLS, including stability andtypicality of solitary wave structures. In particular, we discuss the Gibbs measures ofthe discrete NLS in three dimensions, where there is a striking phase transition tosoliton-like behavior.

Type
Research Article
Copyright
© EDP Sciences, 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

M. Ablowitz, B. Prinar, A. Trubatch. Discrete and Continuous Nonlinear Schrödinger Systems. London Mathematical Society Lecture Note Series, No. 302, Cambridge University Press, 2004.
Bludov, Yu.V., Konotop, V.V., Akhmediev, N.. Matter rogue waves. Phys. Rev. A, 80 (2009), No. 3, 033610. CrossRefGoogle Scholar
Bona, J.L., Li, Y.A.. Decay and analyticity of solitary waves. J. Math. Pures Appl. 76 (1997), No. 5, 377-430. CrossRefGoogle Scholar
Bourgain, J.. Periodic Nonlinear Schrödinger Equation and Invariant Measures. Comm. Math. Phys. 166 (1994), No. 1, 126. CrossRefGoogle Scholar
Bourgain, J.. Invariant measures for NLS in Infinite Volume. Comm. Math. Phys. 210 (2000), No. 3, 605620. CrossRefGoogle Scholar
Bourgain, J.. Invariant measures for the 2D-defocusing nonlinear Schrödinger equation. Comm. Math. Phys. 176 (1996), No. 2, 421445. CrossRefGoogle Scholar
J. Bourgain. On nonlinear Schrödinger equations, Les relations entre les mathématiques et la physique théorique, 11-21, Inst. Hautes Études Sci., Bures-sur-Yvette, 1998.
Brydges, D., Slade, G.. Statistical Mechanics of the 2-Dimensional Focusing Nonlinear Schrödinger Equation, Comm. Math. Phys. 182 (1996), No. 2, 485504. CrossRefGoogle Scholar
Burioni, R., Cassi, D., Sodano, P., Trombettoni, A., Vezzani, A.. Soliton propagation on chains with simple nonlocal defects, Phys. D 216 (2006), No. 1, 7176. CrossRefGoogle Scholar
Y. Burlakov. The phase space of the cubic Schroedinger equation : A numerical study. Thesis (Ph.D.)–University of California, Berkeley. Preprint 740 (1998).
Burq, N., Tzvetkov, N.. Random data Cauchy theory for supercritical wave equations I : local theory. Invent. Math. 173 (2008), No. 3, 449475. CrossRefGoogle Scholar
Burq, N., Tzvetkov, N.. Random data Cauchy theory for supercritical wave equations II : a global existence result. Invent. Math. 173 (2008), No. 3 477496. CrossRefGoogle Scholar
Caffarelli, L., Salsa, S., Silvestre, L.. Regularity estimates for the solution and the free boundary to the obstacle problem for the fractional Laplacian. Invent. Math. 171 2008, No. 2, 425461. CrossRefGoogle Scholar
T. Cazenave. Semilinear Schrödinger equations. Courant Lecture Notes, No. 10, American Mathematical Society and Courant Institute of Mathematical Sciences, New York, 2003.
Cazenave, T., Lions, P.-L.. Orbital stability of standing waves for some nonlinear Schrodinger equations. Comm. Math. Phys. 85 (1982), no. 4, 549561. CrossRefGoogle Scholar
S. Chatterjee, K. Kirkpatrick. Probabilistic methods for discrete nonlinear Schrödinger equations, to appear in Comm. Pure Appl. Math.
Christ, M., Colliander, J., Tao, T.. Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations. Amer. J. Math. 125 (2003), no. 6, 12351293. CrossRefGoogle Scholar
J. Colliander, T. Oh. Almost sure well-posedness of the periodic cubic nonlinear Schrödinger equation below L2, arXiv :0904.2820.
R. Cont, P. Tankov. Financial modelling with jump processes. Chapman & Hall/CRC Financial Mathematics Series, Boca Raton, FL, 2004.
Erdős, L., Schlein, B., Yau, H.-T.. Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math. 167 (2007), No. 3 515614. CrossRefGoogle Scholar
Erdős, L., Schlein, B., Yau, H.-T.. Derivation of the Gross-Pitaevskii Equation for the Dynamics of Bose-Einstein Condensate. Ann. Math. (2) 172 (2010), no. 1, 291370. Google Scholar
P. Felmer, A. Quaas, J. Tan. Positive solutions of nonlinear Schrödinger equation with the fractional Laplacian. Preprint : http://www.capde.cl/publication/abstract/frac-FQTreview1.pdf
Flach, S., Kladko, K., MacKay, R.S.. Energy thresholds for discrete breathers in one-, two- and three-dimensional lattices, Phys. Rev. Lett. 78 (1997), 12071210. CrossRefGoogle Scholar
Gaididei, Yu., Mingaleev, S., Christiansen, P., Rasmussen, K.. Effect of nonlocal dispersion on self-trapping excitations. Phys. Rev. E 55 (1997), No. 5, 61416150. CrossRefGoogle Scholar
Gaididei, Yu., Mingaleev, S., Christiansen, P., Rasmussen, K.. Effect of nonlocal dispersion on self-interacting excitations. Phys. Lett. A 222 (1996), 152-156. CrossRefGoogle Scholar
Ginibre, J., Velo, G.. On a class of nonlinear Schrodinger equations. I. The Cauchy problem, general case. J. Funct. Anal. 32 (1979), no. 1, 132. CrossRefGoogle Scholar
Z. Guo, Y. Wang. Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrdinger and wave equation. arXiv :1007.4299.
Holmer, J., Platte, R., Roudenko, S.. Blow-up criteria for the 3D cubic nonlinear Schrodinger equation, Nonlinearity 23 (2010), No. 4, 9771030. CrossRefGoogle Scholar
Jordan, R., Josserand, C.. Statistical equilibrium states for the nonlinear Schr"odinger equation. Nonlinear waves : computation and theory (Athens, GA,1999). Math. Comput. Simulation 55 (2001), No. 4-6, 433447. Google Scholar
R. Jordan, B. Turkington. Statistical equilibrium theories for the nonlinear Schr"odinger equation, Advances in wave interaction and turbulence (South Hadley, MA, 2000), 27–39, Contemp. Math. 283, Amer. Math. Soc., Providence, RI, 2001.
Kato, T.. On nonlinear Schrödinger equations. t Ann. Inst. H. Poincaré Phys. Theor. 46 (1987), no. 1, 113129. Google Scholar
C. Kenig, Y. Martel, L Robbiano. Local well-posedness and blow up in the energy space for a class of L2 critical dispersion generalized Benjamin-Ono equations. Preprint arXiv :1006.0122
Kevrekidis, P., Pelinovsky, D., Stefanov, A.. Asymptotic stability of small bound states in the discrete nonlinear Schrödinger equation. SIAM J. Math. Anal. 41 (2009), No. 5, 20102030. CrossRefGoogle Scholar
K. Kirkpatrick, E. Lenzmann, G. Staffilani. On the continuum limit for discrete NLS with long-range lattice interactions, arXiv :1108.6136v1.
Kirkpatrick, K., Schlein, B., Staffilani, G.. Derivation of the two-dimensional nonlinear Schrödinger equation from many body quantum dynamics. Amer. J. Math. 133 (2011), no. 1, 91130. CrossRefGoogle Scholar
Komech, A., Kopylova, E., Kunze, M.. Dispersive estimates for 1D discrete Schrödinger and Klein-Gordon equations. Appl. Anal. 85 (2006), no. 12, 14871508. CrossRefGoogle Scholar
O. A. Ladyzhenskaya. The Boundary Value Problems of Mathematical Physics. Applied Mathematical Sciences, No. 49. Springer-Verlag New York, 1985.
N. Laskin. Fractional Schrödinger equation. Phys. Rev. E (3) 66 (2002), no. 5, 056108, 7 pp.
Lebowitz, J., Rose, H., Speer, E.. Statistical Mechanics of the Nonlinear Schrodinger equation, J. Stat. Phys. 50 (1988), No. 3-4, 657687. CrossRefGoogle Scholar
MacKay, R. S., Aubry, S.. Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators, Nonlinearity 7 (1994), No. 6, 16231643. CrossRefGoogle Scholar
McKean, H. P., Vaninsky, K. L.. Brownian motion with restoring drift : the petit and micro-canonical ensembles. Comm. Math. Phys. 160 (1994), no. 3, 615630. CrossRefGoogle Scholar
McKean, H. P., Vaninsky, K. L.. Action-angle variables for the cubic Schrödinger equation. Comm. Pure Appl. Math. 50 (1997), no. 6, 489562. 3.0.CO;2-4>CrossRefGoogle Scholar
McKean, H. P., Vaninsky, K. L.. Cubic Schrödinger : the petit canonical ensemble in action-angle variables. Comm. Pure Appl. Math. 50 (1997), no. 7, 593622. 3.0.CO;2-2>CrossRefGoogle Scholar
Malomed, B., Weinstein, M. I.. Soliton dynamics in the discrete nonlinear Schrödinger equation. Phys. Lett. A 220 (1996), 9196. CrossRefGoogle Scholar
Maris, M.. On the existence, regularity and decay of solitary waves to a generalized Benjamin-Ono equation, Nonlinear Anal. 51 (2002), No. 6, 10731085. CrossRefGoogle Scholar
Mingaleev, S., Christiansen, P., Gaididei, Yu., Johannson, M., Rasmussen, K.. Models for Energy and Charge Transport and Storage in Biomolecules. J. Biol. Phys. 25 (1999), 41-63. CrossRefGoogle ScholarPubMed
Molinet, L.. On ill-posedness for the one-dimensional periodic cubic Schrödinger equation. Math. Res. Lett. 16 (2009), no. 1, 111-120. CrossRefGoogle Scholar
A. Nahmod, T. Oh, L. Rey-Bellet, G. Staffilani. Invariant weighted Wiener measures adn almost sure global well-posedness for the periodic derivative NLS. arXiv :1007.1502.
T. Oh, C. Sulem. On the one-dimensional cubic nonlinear Schrodinger equation below L2, arXiv :1007.2073.
Pelinovsky, D., Kevrekidis, P.. Stability of discrete dark solitons in nonlinear Schrödinger lattices. J. Phys. A 41 (2008), 185206. CrossRefGoogle Scholar
Pelinovsky, D., Sakovich, A.. Internal modes of discrete solitons near the anti-continuum limit of the dNLS equation. Physica D 240 (2011), 265281. CrossRefGoogle Scholar
D. Pelinovsky, A. Stefanov. On the spectral theory and dispersive estimates for a discrete Schrödinger equation in one dimension. J. Math. Phys. 49, (2008), no. 11,113501, 17 pp.
Rider, B.. On the ∞-volume limit of focussing cubic Schrödinger equation. Comm. Pure Appl. Math. 55 (2002), No. 10, 12311248. CrossRefGoogle Scholar
Rider, B.. Fluctuations in the thermodynamic limit of focussing cubic Schrödinger. J. Stat. Phys. 113 (2003), 575594. CrossRefGoogle Scholar
Rumpf, B.. Simple statistical explanation for the localization of energy in nonlinear lattices with two conserved quantities. Phys. Rev. E 69 (2004), 016618. CrossRefGoogle ScholarPubMed
S. Samko, A. Kilbas, O. Marichev. Fractional Integrals and Derivatives : Theory and Applications. Gordon and Breach Science Publishers, Amsterdam, 1993.
Sire, Y., Valdinoci, E.. Fractional Laplacian phase transitions and boundary reactions : a geometric inequality and a symmetry result. J. Funct. Anal. 256 (2009), no. 6, 18421864. CrossRefGoogle Scholar
Stefanov, A., Kevrekidis, P.. Asymptotic behaviour of small solutions for the discrete nonlinear Schrodinger and Klein-Gordon equations. Nonlinearity 18 (2005), No. 4, 1841-1857. CrossRefGoogle Scholar
C. Sulem, P.L. Sulem. The nonlinear Schrödinger equation : self-focusing and wave collapse. Springer, 1999.
Tzvetkov, N.. Invariant measures for the defocusing NLS. Ann. Inst. Fourier (Grenoble) 58 (2008), no. 7, 25432604. CrossRefGoogle Scholar
Weinstein, M. I.. Excitation Thresholds for Nonlinear Localized Modes on Lattices. Nonlinearity 12 (1999), No. 3, 673691. CrossRefGoogle Scholar
Zakharov, V. E.. Stability of periodic waves of finite amplitude on a surface of deep fluid. J. Appl. Mech. Tech. Phys. 2 (1968), 190198. Google Scholar