Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T17:57:51.254Z Has data issue: false hasContentIssue false

The automorphism group of the ${\mathbb Z}_2$-orbifold of the Barnes–Wall lattice vertex operator algebra of central charge 32

Published online by Cambridge University Press:  09 January 2014

HIROKI SHIMAKURA*
Affiliation:
Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences, Tohoku University, Aramaki aza Aoba 6-3-09, Aoba-ku Sendai-city, 980-8579, Japan. e-mail: shimakura@m.tohoku.ac.jp

Abstract

In this paper, we prove that the full automorphism group of the ${\mathbb Z}_2$-orbifold of the Barnes–Wall lattice vertex operator algebra of central charge 32 has the shape 227.E6(2). In order to identify the group structure, we introduce a graph structure on the Griess algebra and show that it is a rank 3 graph associated to E6(2).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[AD04]Abe, T. and Dong, C.Classification of irreducible modules for the vertex operator algebra V+L: general case. J. Algebra 273 (2004), 657–685CrossRefGoogle Scholar
[ADL05]Abe, T., Dong, C. and Li, H.Fusion rules for the vertex operator algebras M(1)+ and VL +. Comm. Math. Phys. 253 (2005), 171219.Google Scholar
[AS76]Aschbacher, M. and Seitz, G. M.Involutions in Chevalley groups over fields of even order. Nagoya Math. J. 63 (1976), 191.CrossRefGoogle Scholar
[BW59]Barnes, E. S. and Wall, G. E.Some extreme forms defined in terms of Abelian groups. J. Austral. Math. Soc. 1 (1959), 4763CrossRefGoogle Scholar
[Bo86]Borcherds, R. E.Vertex algebras, Kac–Moody algebras and the Monster. Proc. Nat'l. Acad. Sci. U. S. A. 83 (1986), 30683071.Google Scholar
[Bo92]Borcherds, R. E.Monstrous moonshine and monstrous Lie superalgebras. Invent. Math. 109 (1992), 405444.Google Scholar
[CCNPW85]Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A. and Wilson, R. A.Atlas of Finite Groups (Oxford University Press, Oxford, 1985).Google Scholar
[CS99]Conway, J. H. and Sloane, N. J. A.Sphere Packings, Lattices and Groups, 3rd Edition (Springer, New York, 1999).CrossRefGoogle Scholar
[DGM96]Dolan, L., Goddard, P. and Montague, P.Conformal field theories, representations and lattice constructions. Comm. Math. Phys. 179 (1996), 61120.CrossRefGoogle Scholar
[Do930]Dong, C.Vertex algebras associated with even lattices. J. Algebra 161 (1993), 245265.Google Scholar
[DG981]Dong, C. and Griess, R. L.Rank one lattice type vertex operator algebras and their automorphism groups. J. Algebra 208 (1998), 262275.CrossRefGoogle Scholar
[DG022]Dong, C. and Griess, R. L.Automorphism groups and derivation algebras of finitely generated vertex operator algebras. Michigan Math. J. 50 (2002), 227239.CrossRefGoogle Scholar
[DG053]Dong, C. and Griess, R. L.The rank two lattice type vertex operator algebras VL+ and their automorphism groups. Michigan Math. J. 53 (2005), 691715.Google Scholar
[DGH984]Dong, C., Griess, R. L. and Höhn, G.Framed vertex operator algebras, codes and Moonshine module. Comm. Math. Phys. 193 (1998), 407448.Google Scholar
[DLM005]Dong, C., Li, H. and Mason, G.Modular-invariance of trace functions in orbifold theory and generalized Moonshine. Comm. Math. Phys. 214 (2000), 156.CrossRefGoogle Scholar
[DM046]Dong, C. and Mason, G. Rational vertex operator algebras and the effective central charge. Int. Math. Res. Not. (2004), 2989–3008.Google Scholar
[DN997]Dong, C. and Nagatomo, K.Automorphism groups and twisted modules for lattice vertex operator algebras. Comtemp. Math. 248 (1999), 117133Google Scholar
[FHL938]Frenkel, I., Huang, Y. and Lepowsky, J.On axiomatic approaches to vertex operator algebras and modules. Mem. Amer. Math. Soc. 104 (1993).Google Scholar
[FLM889]Frenkel, I., Lepowsky, J. and Meurman, A.Vertex operator algebras and the Monster. Pure and Appl. Math. vol. 134, (Academic Press, Boston, 1988).Google Scholar
[Go800]Gorenstein, D.Finite groups, (Chelsea Publishing Co., New York, 1980).Google Scholar
[GLS981]Gorenstein, D., Lyons, R. and Solomon, R.The classification of the finite simple groups. Number 3. Mathematical Surveys and Monographs vol. 40.3 (American Mathematical Society, Providence, 1998).Google Scholar
[Gr822]Griess, R. L.The friendly giant. Invent. Math. 69 (1982) 1102.Google Scholar
[Gr983]Griess, R. L.A vertex operator algebra related to E 8 with automorphism group O +(10,2) Ohio State Univ. Math. Res. Inst. Publ. 7 (1998), 4358.Google Scholar
[Gr054]Griess, R. L.Pieces of 2d: existence and uniqueness for Barnes–Wall and Ypsilanti lattices Adv. Math. 196 (2005), 147192, Corrections and additions, 211 (2007), 819–824.Google Scholar
[H5]Höhn, G. Selbstduale Vertexoperatorsuperalgebren und das Babymonster. PhD. thesis. Universität Bonn (1995), Bonner Math. Schriften 286 (1996).Google Scholar
[H6]Höhn, G.Conformal designs based on vertex operator algebras. Adv. Math. 217 (2008), 23012335.Google Scholar
[HL957]Huang, Y.-Z and Lepowsky, J.A theory of tensor products for module categories for a vertex operator algebra. III. J. Pure Appl. Algebra 100 (1995), 141171.Google Scholar
[KL828]Kantor, W. M. and Liebler, R. A.The rank 3 permutation representations of the finite classical groups. Trans. Amer. Math. Soc. 271 (1982), 171.CrossRefGoogle Scholar
[LSY079]Lam, C., Sakuma, S. and Yamauchi, H.Ising vectors and automorphism groups of commutant subalgebras related to root systems. Math. Z. 255 (2007), 597626.Google Scholar
[Li870]Liebeck, M. W.The affine permutation groups of rank three. Proc. London Math. Soc. (3) 54 (1987), 477516.Google Scholar
[LS861]Liebeck, M. W. and Saxl, J.The finite primitive permutation groups of rank three. Bull. London Math. Soc. 18 (1986), 165172.Google Scholar
[Ma012]Matsuo, A.Norton's trace formulae for the Griess algebra of a vertex operator algebra with larger symmetry. Comm. Math. Phys. 224 (2001), 565591.CrossRefGoogle Scholar
[MM003]Matsuo, A. and Matsuo, M.The automorphism group of the Hamming code vertex operator algebra. J. Algebra 228 (2000), 204226.CrossRefGoogle Scholar
[Mi964]Miyamoto, M.Griess algebras and conformal vectors in vertex operator algebras. J. Algebra 179 (1996), 523548.CrossRefGoogle Scholar
[Mi5]Miyamoto, M. Automorphism groups of ${\mathbb Z}_2$-orbifold VOAs, unpublished paper (1996).Google Scholar
[Mi046]Miyamoto, M.A new construction of the Moonshine vertex operator algebra over the real number field. Ann. of Math. 159 (2004), 535596.Google Scholar
[Sh047]Shimakura, H.The automorphism group of the vertex operator algebra VL + for an even lattice L without roots. J. Algebra 280 (2004), 2957.Google Scholar
[Sh068]Shimakura, H.The automorphism groups of the vertex operator algebras VL +: general case. Math. Z. 252 (2006), 849862.Google Scholar
[Sh079]Shimakura, H.Lifts of automorphisms of vertex operator algebras in simple current extensions. Math. Z. 256 (2007), 491508.Google Scholar
[Sh110]Shimakura, H.An E 8-approach to the moonshine vertex operator algebra. J. London Math. Soc. 83 (2011), 493516.Google Scholar
[Sh121]Shimakura, H.Classification of Ising vectors in the vertex operator algebra VL +. Pacific J. Math. 258 (2012), 487495.Google Scholar
[Ti842]Tits, J.On R. Griess' “friendly giant”. Invent. Math. 78 (1984), 491499.Google Scholar