Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T07:39:28.018Z Has data issue: false hasContentIssue false

A decomposition for Hardy martingales II

Published online by Cambridge University Press:  02 June 2014

PAUL F. X. MÜLLER*
Affiliation:
Department of Mathematics, J. Kepler Universität Linz, A-4040 Linz, Austria. e-mail: pfxm@bayou.uni-linz.ac.at

Abstract

We prove Davis and Garsia Inequalities for dyadic perturbations of Hardy martingales and show that those inequalities play a substantial role in the proof of Bourgain's [1] embedding L1L1/H10. This paper continues [17] on Davis and Garsia Inequalities (DGI).

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bourgain, J.Embedding L 1 in L 1/H 1. Trans. Amer. Math. Soc. 278 (2) (1983), 689702.Google Scholar
[2]Bourgain, J.The dimension conjecture for polydisc algebras. Israel J. Math. 48 (4) (1984), 289304.Google Scholar
[3]Bourgain, J.Martingale transforms and geometry of Banach spaces. In Israel Seminar on Geometrical Aspects of Functional Analysis (1983/84), pages XIV, 16 (Tel Aviv university., Tel Aviv, 1984).Google Scholar
[4]Bu, S. Q. and Schachermayer, W.Approximation of Jensen measures by image measures under holomorphic functions and applications. Trans. Amer. Math. Soc. 331 (2) (1992), 585608.Google Scholar
[5]Davis, W. J., Garling, D. J. H. and Tomczak–Jaegermann, N.The complex convexity of quasinormed linear spaces. J. Funct. Anal. 55 (1) (1984), 110150.Google Scholar
[6]Durrett, R.Brownian motion and martingales in analysis. Wadsworth Mathematics Series (Wadsworth International Group, Belmont, CA, 1984).Google Scholar
[7]Edgar, G. A.Complex martingale convergence. In Banach Spaces (Columbia, Mo., 1984), of Lecture Notes in Math., vol. 1166, (Springer, Berlin, 1985), pages 3859.Google Scholar
[8]Garling, D. J. H.On martingales with values in a complex Banach space. Math. Proc. Camb. Phil. Soc. 104 (2) (1988), 399406.Google Scholar
[9]Garling, D. J. H.Hardy martingales and the unconditional convergence of martingales. Bull. London Math. Soc. 23 (2) (1991), 190192.Google Scholar
[10]Garnett, J. B.Bounded Analytic Functions. Pure and Applied Mathem. vol. 96 (Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1981).Google Scholar
[11]Garsia, A. M.Martingale inequalities: Seminar notes on recent progress. Mathematics Lecture Notes Series. (W. A. Benjamin, Inc., Reading, Mass.-London-Amsterdam, 1973).Google Scholar
[12]Ghoussoub, N., Lindenstrauss, J. and Maurey, B.Analytic martingales and plurisubharmonic barriers in complex Banach spaces. In Banach Space Theory (Iowa City, IA, 1987). Contemp. Math. vol. 85. (Amer. Math. Soc., Providence, RI, 1989), pages 111130.Google Scholar
[13]Ghoussoub, N. and Maurey, B.Plurisubharmonic martingales and barriers in complex quasi-Banach spaces. Ann. Inst. Fourier (Grenoble) 39 (4) (1989), 10071060.Google Scholar
[14]Jones, P. W. and Müller, P. F. X.Conditioned Brownian motion and multipliers into SL. Geom. Funct. Anal. 14 (2) (2004), 319379.Google Scholar
[15]Maurey, B.Isomorphismes entre espaces H1. Acta Math. 145 (1–2) (1980), 79120.Google Scholar
[16]Müller, P. F. X. A Decomposition for Hardy martingales. Part II. arXiv 1209.3964.Google Scholar
[17]Müller, P. F. X.A Decomposition for Hardy martingales. Indiana. Univ. Math. J. 61 (5) (2012), x115.CrossRefGoogle Scholar
[18]Pisier, G.Factorization of operator valued analytic functions. Adv. Math. 93 (1) (1992), 61125.Google Scholar
[19]Pisier, G.A polynomially bounded operator on Hilbert space which is not similar to a contraction. J. Amer. Math. Soc. 10 (2) (1997), 351369.Google Scholar
[20]Varopoulos, N. T.The Helson-Szegő theorem and Ap-functions for Brownian motion and several variables. J. Funct. Anal. 39 (1) (1980), 85121.Google Scholar