Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T01:47:51.287Z Has data issue: false hasContentIssue false

A dualizing complex for Stanley–Reisner rings

Published online by Cambridge University Press:  24 October 2008

Hans-Gert Gräbe
Affiliation:
Martin-Luther-Universität Halle-Wittenberg, DDR†

Abstract

In this paper we construct a (multihomogeneous) dualizing complex for A [Δ], the Stanley–Reisner ring of Δ over an arbitrary commutative noetherian ring A with identity, admitting a dualizing complex. In addition, some consequences are discussed.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Atiyah, M. F. and Macdonald, I. G.. Introduction to Commutative Algebra (Addison-Wesley, 1969).Google Scholar
[2]Ayomaya, Y. and Goto, S.. On the type of graded Cohen-Macaulay rings. J. Math. Kyoto Univ. 15 (1975), 1923.Google Scholar
[3]Baclawski, K.. Cohen–Macaulay ordered sets. J. Algebra 63 (1980), 226258.CrossRefGoogle Scholar
[4]Baclawski, K. and Garsia, A.. Combinatorial decompositions of a class of rings. Adv. in Math. 39 (1981), 155184.CrossRefGoogle Scholar
[5]Baclawski, K.. Rings with lexicographic straightening law. Adv. in Math. 39 (1981), 185213.CrossRefGoogle Scholar
[6]Björner, A.. Shellable and Cohen—Macaulay partially ordered sets. Trans. Amer. Math. Soc. 260 (1980), 159183.CrossRefGoogle Scholar
[7]BjÖrner, A.. The unimodality conjecture for convex polytopes. Bull. Amer. Math. Soc. (N.S.) 4 (1981), 187189.CrossRefGoogle Scholar
[8]BjÖrner, A. and Wachs, M.. On lexicographically shellable posets. Rep. Dep. Math. Univ. Stockholm 9 (1982).Google Scholar
[9]Foxby, H.-B.. A homological theory of complexes of modules (Kopenhagen University, preprint 19, 1981).Google Scholar
[10]Goto, S. and Watanabe, K.. On graded rings. II. Tokyo J. Math. 1 (1978), 337–261.CrossRefGoogle Scholar
[11]GrÄbe, H.-G.. The canonical module of Stanley-Reisner rings. J. Algebra 86 (1984), 272281.CrossRefGoogle Scholar
[12]GrÄbe, H.-G.. Über den Stanley-Reisner-Ring eines simplizialen Komplexes (Dissertation, Martin-Luther-Univ. Halle/S., 1982).Google Scholar
[13]Hochster, M.. Cohen-Macaulay rings, combinatorics and simplicial complexes. In Ring theory. II. Proceedings of the Second Oklahoma Conference. Lecture Notes in Pure and Appl. Math. vol. 26 (1977).Google Scholar
[14]Matijevic, J. and Roberts, P.. A conjecture of Nagata on graded Cohen-Macaulay modules. J. Math. Kyoto Univ. 14 (1974), 125128.Google Scholar
[15]Reisner, G.. Cohen-Macaulay quotients of polynomial rings. Adv. in Math. 21 (1976), 3049.CrossRefGoogle Scholar
[16]Schenzel, P.. Dualisierende Komplexe in der lokalen Algebra und Buchsbaumringe. Springer Lecture Notes in Math. vol. 907 (1982).CrossRefGoogle Scholar
[17]Spanier, E. H.. Algebraic Topology (McGraw-Hill, 1966).Google Scholar
[18]Stanley, R. P.. Interactions between commutative algebra and combinatorics. Rep. Dep. Math. Univ. Stockholm 4 (1982).Google Scholar
[19]Stanley, R. P.. Cohen-Macaulay complexes. In Higher Combinatorics, ed. Aigner, M. (Reidel, Dortrecht, 1977), pp. 5262.Google Scholar
[20]Stanley, R. P.. The upper bound conjecture and Cohen-Macaulay rings. Stud. Appl. Math. 54 (1975), 135142.CrossRefGoogle Scholar
[21]Stanley, R. P.. The number of faces of a simplicial convex polytope. Adv. in Math. 35 (1980), 236238.CrossRefGoogle Scholar