Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T22:02:44.207Z Has data issue: false hasContentIssue false

Entropy, character theory and centrality of finite quasigroups

Published online by Cambridge University Press:  24 October 2008

Jonathan D. H. Smith
Affiliation:
Department of Mathematics, Iowa State University, Ames, Iowa 50011, U.S.A.

Abstract

The paper introduces concepts of entropy and asymptotic entropy for finite quasigroups. A quasigroup is abelian if and only if its entropy is maximal. It is a З-quasigroup if and only if its asymptotic entropy is maximal.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Brooks, D. R., Cumming, D. D. and LeBlond, P. H.. Dollo's law and the second law of thermodynamics: analogy or extension? In Entropy, Information and Evolution: New Perspectives on Physical and Biological Evolution (eds Weber, B. H., Depew, D. J. and Smith, J. D.) (M.I.T. Press, 1988), pp. 189224.Google Scholar
[2]Bruck, R. H.. Contributions to the theory of loops. Trans. Amer. Math. Soc. 60 (1946), 245354.CrossRefGoogle Scholar
[3]Chein, O., Pflugfelder, H. and Smith, J. D. H. (eds.) Theory and Applications of Quasigroups and Loops (Heldermann Verlag, 1990).Google Scholar
[4]Chernoff, H.. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat. 23 (1952), 493509.CrossRefGoogle Scholar
[5]Cornfeld, I. P., Fomin, S. W. and Sinai, Ya. G.. Ergodic Theory (Springer-Verlag, 1982).CrossRefGoogle Scholar
[6]Erdős, P. and Spencer, J.. Probabilistic Methods in Combinatorics (Academic Press, 1974).Google Scholar
[7]Etherington, I. M. H.. Note on quasigroups and trees. Proc. Edinburgh Math. Soc. (2) 13 (1963), 219222.CrossRefGoogle Scholar
[8]Johnson, K. W. and Smith, J. D. H.. Characters of finite quasigroups. European J. Combin. 5 (1984), 4350.CrossRefGoogle Scholar
[9]Johnson, K. W. and Smith, J. D. H.. Characters of finite quasigroups II: induced characters. European J. Combin. 7 (1986), 131137.CrossRefGoogle Scholar
[10]Johnson, K. W. and Smith, J. D. H.. Characters of finite quasigroups III: quotients and fusion. European J. Combin. 10 (1989), 4756.CrossRefGoogle Scholar
[11]Johnson, K. W. and Smith, J. D. H.. Characters of finite quasigroups IV: products and superschemes. European J. Combin. 10 (1989), 257263.CrossRefGoogle Scholar
[12]Johnson, K. W. and Smith, J. D. H.. Characters of finite quasigroups V: linear characters. European J. Combin. 10 (1989), 449456.CrossRefGoogle Scholar
[13]Smith, J. D. H.. Mal'cev Varieties (Springer, Berlin, 1976).CrossRefGoogle Scholar
[14]Smith, J. D. H.. Representation Theory of Infinite Groups and Finite Quasigroups (Université de Montréal, Montréal, 1986).Google Scholar
[15]Smith, J. D. H.. A class of mathematical models for evolution and hierarchal information theory. (IMA preprint series no. 396, 1988.)Google Scholar
[16]Spencer, J.. Ten Lectures on the Probabilistic Method (SIAM, 1987).Google Scholar