Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-20T11:27:40.275Z Has data issue: false hasContentIssue false

Exceptional sets for self-affine fractals

Published online by Cambridge University Press:  01 November 2008

KENNETH FALCONER
Affiliation:
Mathematical Institute, University of St Andrews, St Andrews, Fife KY16 9SS. e-mail: kjf@st-and.ac.uk, jjm38@st-and.ac.uk
JUN MIAO
Affiliation:
Mathematical Institute, University of St Andrews, St Andrews, Fife KY16 9SS. e-mail: kjf@st-and.ac.uk, jjm38@st-and.ac.uk

Abstract

Under certain conditions the ‘singular value function’ formula gives the Hausdorff dimension of self-affine fractals for almost all parameters in a family. We show that the size of the set of exceptional parameters is small both in the sense of Hausdorff dimension and Fourier dimension.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Bluhm, C.Fourier asymptotics of statistically self-similar measures. J. Fourier Anal. App. 5 (1999), 355362.CrossRefGoogle Scholar
[2]Falconer, K. J.Hausdorff dimension and the exceptional set of projections. Mathematika 29 (1982), 109115.CrossRefGoogle Scholar
[3]Falconer, K. J.The Geometry of Fractal Sets (Cambridge University Press, 1985).CrossRefGoogle Scholar
[4]Falconer, K. J.The Hausdorff dimension of self-affine fractals. Math. Proc. Camb. Phil. Soc. 103 (1988), 169–179.CrossRefGoogle Scholar
[5]Falconer, K. J.The dimension of self-affine fractals II. Math. Proc. Camb. Phil. Soc. 111 (1992), 339350.CrossRefGoogle Scholar
[6]Falconer, K. J.Bounded distortion and dimension for nonconformal repellers. Math. Proc. Camb. Phil. Soc. 115 (1994), 315334.CrossRefGoogle Scholar
[7]Falconer, K. J.Fractal Geometry – Mathematical Foundations and Applications (John Wiley, 2nd edn. 2003).CrossRefGoogle Scholar
[8]Hutchinson, J. E.Fractals and self-similarity. Indiana Univ. Math. J. 30 (1981), 713747.CrossRefGoogle Scholar
[9]Jordan, T., Pollicott, M. and Simon, K.Hausdorff dimension for randomly perturbed self affine attractors. Comm. Math. Phys. 270 (2007), 519544.CrossRefGoogle Scholar
[10]Kahane, J.-P.Some Random Series of Functions (Cambridge University Press, 2nd edn. 1985).Google Scholar
[11]Mattila, P.Geometry of Sets and Measures in Euclidean Spaces (Cambridge University Press, 1995).CrossRefGoogle Scholar
[12]Peres, Y. and Schlag, W.Smoothness of projections, Bernoulli convolutions, and the dimension of exceptions. Duke Math. J. 102 (2000), 193251.CrossRefGoogle Scholar
[13]Peres, Y. and Solomyak, B.Problems on self-similar and self-affine sets: an update. In Fractal Geometry and Stochastics II. Progr. Probab. vol. 102 (Birkhaüser, 2000), pp. 95106.Google Scholar
[14]Rogers, C. A.Hausdorff Measures (Cambridge University Press, 1998).Google Scholar
[15]Solomyak, B.Measure and dimensions for some fractal families. Math. Proc. Camb. Phil. Soc. 124 (1998), 531546.CrossRefGoogle Scholar